
Erays: Reverse Engineering Ethereum’s Opaque
Smart Contracts

 Yi Zhou, Deepak Kumar, Surya Bakshi,
Joshua Mason, Andrew Miller, Michael Bailey
 University of Illinois Urbana-Champaign

1

Introduction:
Ethereum

2

Introduction:
Ethereum Smart Contracts

● Computer programs on the
blockchain

● Written in high level language
(Solidity)

● Executed in the Ethereum Virtual
Machine (EVM)

3

Solidity Code

contract dummy {
uint s;

function foo(uint a) public returns (uint) {
while (a < s) {

if (a > 10) {
a += 1;

} else {
a += 2;

}
}
return a;

}
} 4

Compiled Contract

608060405260043610603e5763ffffffff7c0100000000000000000000000
0000000000000000000000000000000006000350416632fbebd3881146043
575b600080fd5b348015604e57600080fd5b506058600435606a565b60408
051918252519081900360200190f35b60005b600054821015609357600a82
1115608857600182019150608f565b6002820191505b606d565b50905600a
165627a7a7230582095826fc9f61669f3d0fe36966d60c64042dec36a23ac
89e6b4ebe1752f2c7ca00029

5

EVM Bytecode

PUSH1 0x80
PUSH1 0x40
MSTORE
PUSH1 0x04
CALLDATASIZE
LT
PUSH1 0x3e
JUMPI
PUSH4 0xffffffff
PUSH29
0x0100
PUSH1 0x00
CALLDATALOAD
... 6

● EVM bytecode is not easily
understandable

● High level source code is not always
available

● Contract functionality remains
opaque/proprietary

Problem:
Opaque/proprietary contracts

7

● Total Count: 1,024,886

● Unique Count: 34,328 Ecosystem:
How many contracts are there?

8

● 10,387 Solidity Source Files
Collected (from Etherscan)

● 35 Versions (v0.1.3 to v0.4.19) of
Solidity Compilers Used

● 88,426 Unique Binaries Compiled

How many contracts are
opaque/proprietary?

Ecosystem:

9

Ecosystem: Measuring Opacity

Contracts

Total 1,024,886

Unique 34,328 (100.0%)

 Unique Transparent 7,734 (22.5%)

 Unique Opaque 26,594 (77.5%)

10

Ecosystem: Measuring Opacity

Contracts

Total 1,024,886

Unique 34,328 (100.0%)

 Unique Transparent 7,734 (22.5%)

 Unique Opaque 26,594 (77.5%)

11

12

Erays

Erays: System Design

 1

Control Flow
Graph

Recovery

 2

Lifting

 3

Optimization

 4

Aggregation

 5

Control Flow
Structure
Recovery

13

● Identify basic block boundaries
 ...
 JUMPDEST
 PUSH1 0x0
 JUMPDEST
 PUSH1 0x0
 SLOAD
 DUP3
 LT
 ISZERO
 PUSH1 0x93
 JUMPI
 ...

Control Flow Graph Recovery

141

● Identify basic block boundaries

Control Flow Graph Recovery

 ...
 JUMPDEST
 PUSH1 0x0
 JUMPDEST
 PUSH1 0x0
 SLOAD
 DUP3
 LT
 ISZERO
 PUSH1 0x93
 JUMPI
 ...

151

● Identify basic block boundaries

● Organize basic blocks into a CFG

○ Emulate the contract using a stack model

○ Explore the contract in a manner similar to Depth First Search

○ Record stack images at each block entrance

Control Flow Graph Recovery

161

JUMPDEST
...

...
PUSH1 0x88
JUMPI

Control Flow Graph Recovery

...
PUSH1 0x8f
JUMP

...
PUSH1 0x93
JUMPI

...
return

...

...
PUSH1 0x6d
JUMP

17

JUMPDEST
...

...
PUSH1 0x88
JUMPI

Control Flow Graph Recovery

...
PUSH1 0x8f
JUMP

...
PUSH1 0x93
JUMPI

...
return

...

...
PUSH1 0x6d
JUMP

18

JUMPDEST
...

...
PUSH1 0x88
JUMPI

Control Flow Graph Recovery

...
PUSH1 0x8f
JUMP

...
PUSH1 0x93
JUMPI

...
return

...

...
PUSH1 0x6d
JUMP

19

JUMPDEST
...

...
PUSH1 0x88
JUMPI

Control Flow Graph Recovery

...
PUSH1 0x8f
JUMP

...
PUSH1 0x93
JUMPI

...
return

...

...
PUSH1 0x6d
JUMP

20

JUMPDEST
...

...
PUSH1 0x88
JUMPI

Control Flow Graph Recovery

...
PUSH1 0x8f
JUMP

...
PUSH1 0x93
JUMPI

...
return

...

...
PUSH1 0x6d
JUMP

21

JUMPDEST
...

...
PUSH1 0x88
JUMPI

Control Flow Graph Recovery

...
PUSH1 0x8f
JUMP

...
PUSH1 0x93
JUMPI

...
return

...

...
PUSH1 0x6d
JUMP

22

JUMPDEST
...

...
PUSH1 0x88
JUMPI

Control Flow Graph Recovery

...
PUSH1 0x8f
JUMP

...
PUSH1 0x93
JUMPI

...
return

...

...
PUSH1 0x6d
JUMP

23

JUMPDEST
...

...
PUSH1 0x88
JUMPI

Control Flow Graph Recovery

...
PUSH1 0x8f
JUMP

...
PUSH1 0x93
JUMPI

...
return

...

...
PUSH1 0x6d
JUMP

24

JUMPDEST
...

...
PUSH1 0x88
JUMPI

Control Flow Graph Recovery

...
PUSH1 0x8f
JUMP

...
PUSH1 0x93
JUMPI

...
return

...

...
PUSH1 0x6d
JUMP

25

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

○ Map stack slots to registers

Lifting: Stack-based to Register-based

...

$s2

$s1

$s0

261 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

○ Map stack slots to registers

○ Assign registers to each
bytecode (using stack height)

Lifting: Stack-based to Register-based

ADD

$s2 0x2

$s1 0x3

$s0 0xb2

271 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

○ Map stack slots to registers

○ Assign registers to each
bytecode (using stack height)

Lifting: Stack-based to Register-based

ADD

$s2 0x2

$s1 0x3

$s0 0xb2

281 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

○ Map stack slots to registers

○ Assign registers to each
bytecode (using stack height)

Lifting: Stack-based to Register-based

ADD

$s2 0x2 + 0x3

$s1

$s0 0xb2

291 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

○ Map stack slots to registers

○ Assign registers to each
bytecode (using stack height)

Lifting: Stack-based to Register-based

ADD

$s2 0x5

$s1

$s0 0xb2

301 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

○ Map stack slots to registers

○ Assign registers to each
bytecode (using stack height)

Lifting: Stack-based to Register-based

ADD

$s2

$s1 0x5

$s0 0xb2

311 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

○ Map stack slots to registers

○ Assign registers to each
bytecode (using stack height)

Lifting: Stack-based to Register-based

ADD $s1, $s2, $s1

$s2

$s1 0x5

$s0 0xb2

321 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

○ Map stack slots to registers

○ Assign registers to each
bytecode (using stack height)

Lifting: Stack-based to Register-based

 PUSH1 0x0
 SLOAD
 DUP3
 LT
 ISZERO
 PUSH1 0x93
 JUMPI

331 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

○ Map stack slots to registers

○ Assign registers to each
bytecode (using stack height)

Lifting: Stack-based to Register-based

 MOVE $s4, 0x0
 SLOAD $s4, [$s4]
 MOVE $s5, $s2
 LT $s4, $s5, $s4
 ISZERO $s4, $s4
 MOVE $s5, 0x93
 JUMPI $s5, $s4

341 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

● Introduce new instructions

Lifting: Stack-based to Register-based

351 2

● Convert stack-based operations into
register-based representation (R.
Vallee-Rai 1999)

● Introduce new instructions

○ INTCALL, INTRET

○ MOVE

○ ASSERT

○ NEQ, GEQ, LEQ, SL, SR

Lifting: Stack-based to Register-based

361 2

● Global optimizations (1973 G. Kildall)

Optimization: Removing Redundancy

 MOVE $s4, 0x0
 SLOAD $s4, [$s4]
 MOVE $s5, $s2
 LT $s4, $s5, $s4
 ISZERO $s4, $s4
 MOVE $s5, 0x93
 JUMPI $s5, $s4

371 2 3

● Global optimizations (1973 G. Kildall)

○ Constant propagation

Optimization: Removing Redundancy

 MOVE $s4, 0x0
 SLOAD $s4, [0x0]
 MOVE $s5, $s2
 LT $s4, $s5, $s4
 ISZERO $s4, $s4
 MOVE $s5, 0x93
 JUMPI 0x93, $s4

381 2 3

● Global optimizations (1973 G. Kildall)

○ Constant propagation

○ Copy propagation

Optimization: Removing Redundancy

 MOVE $s4, 0x0
 SLOAD $s4, [0x0]
 MOVE $s5, $s2
 LT $s4, $s2, $s4
 ISZERO $s4, $s4
 MOVE $s5, 0x93
 JUMPI 0x93, $s4

391 2 3

● Global optimizations (1973 G. Kildall)

○ Constant propagation

○ Copy propagation

○ Dead code elimination

Optimization: Removing Redundancy

 --
 SLOAD $s4, [0x0]
 --
 LT $s4, $s2, $s4
 ISZERO $s4, $s4
 --
 JUMPI 0x93, $s4

401 2 3

● Global optimizations (1973 G. Kildall)

○ Constant propagation

○ Copy propagation

○ Dead code elimination

● Local optimizations

Optimization: Removing Redundancy

 --
 SLOAD $s4, [0x0]
 --
 LT $s4, $s2, $s4
 ISZERO $s4, $s4
 --
 JUMPI 0x93, $s4

411 2 3

● Global optimizations (1973 G. Kildall)

○ Constant propagation

○ Copy propagation

○ Dead code elimination

● Local optimizations

Optimization: Removing Redundancy

 --
 SLOAD $s4, [0x0]
 --
 --
 GEQ $s4, $s2, $s4
 --
 JUMPI 0x93, $s4

421 2 3

● Global optimizations (1973 G. Kildall)

○ Constant propagation

○ Copy propagation

○ Dead code elimination

● Local optimizations

Optimization: Removing Redundancy

 SLOAD $s4, [0x0]
 GEQ $s4, $s2, $s4
 JUMPI 0x93, $s4

431 2 3

● Convert register-based instructions
into three address form

Aggregation: Condensing the Output

 SLOAD $s4, [0x0]
 GEQ $s4, $s2, $s4
 JUMPI 0x93, $s4

441 2 3 4

● Convert register-based instructions
into three address form

Aggregation: Condensing the Output

 $s4 = S[0x0]
 $s4 = $s2 ≥ $s4
 if ($s4) goto 0x93

451 2 3 4

● Convert register-based instructions
into three address form

● Aggregate instructions into nested
expressions (R. Vallee-Rai 1999)

Aggregation: Condensing the Output

 $s4 = S[0x0]
 $s4 = $s2 ≥ $s4
 if ($s4) goto 0x93

461 2 3 4

● Convert register-based instructions
into three address form

● Aggregate instructions into nested
expressions (R. Vallee-Rai 1999)

Aggregation: Condensing the Output

 --
 $s4 = $s2 ≥ S[0x0]
 if ($s4) goto 0x93

471 2 3 4

● Convert register-based instructions
into three address form

● Aggregate instructions into nested
expressions (R. Vallee-Rai 1999)

Aggregation: Condensing the Output

 --
 --
 if ($s2 ≥ S[0x0]) goto 0x93

481 2 3 4

● Convert register-based instructions
into three address form

● Aggregate instructions into nested
expressions (R. Vallee-Rai 1999)

Aggregation: Condensing the Output

 if ($s2 ≥ S[0x0]) goto 0x93

491 2 3 4

Control Flow Structure Recovery

● Separate each public function subgraph

● Use structural analysis (M. Sharir 1980)

○ Match subgraphs to control constructs (while, if then else)

○ Collapse matched subgraphs

501 2 3 4 5

ASSERT(0 == msg.value)
$s2 = C[0x4]

if ($s2 <= 0xa) goto 0x88

Control Flow Structure Recovery

$s2 = 0x1 + $s2
goto 0x8f

if ($s2 >= S[0x0]) goto 0x93

M[$m] = $s2
RETURN($m, 0x20)

$s2 = 0x2 + $s2

goto 0x6d

51

ASSERT(0 == msg.value)
$s2 = C[0x4]

if ($s2 <= 0xa) {
$s2 = 0x2 + $s2

} else {
$s2 = 0x1 + $s2

}

Control Flow Structure Recovery

if ($s2 >= S[0x0]) goto 0x93

M[$m] = $s2
RETURN($m, 0x20)

goto 0x6d

52

ASSERT(0 == msg.value)
$s2 = C[0x4]

if ($s2 <= 0xa) {
$s2 = 0x2 + $s2

} else {
$s2 = 0x1 + $s2

}
goto 0x6d

Control Flow Structure Recovery

if ($s2 >= S[0x0]) goto 0x93

M[$m] = $s2
RETURN($m, 0x20)

53

ASSERT(0 == msg.value)
$s2 = C[0x4]

Control Flow Structure Recovery

while (0x1) {
if ($s2 >= S[0x0])

break
if ($s2 <= 0xa) {

$s2 = 0x2 + $s2
} else {

$s2 = 0x1 + $s2
}

}

M[$m] = $s2
RETURN($m, 0x20)

54

Control Flow Structure Recovery

ASSERT(0 == msg.value)
$s2 = C[0x4]
while (0x1) {

if ($s2 >= S[0x0])
break

if ($s2 <= 0xa) {
$s2 = 0x2 + $s2

} else {
$s2 = 0x1 + $s2

}
}
M[$m] = $s2
RETURN($m, 0x20)

55

● Construct test cases using historical
transactions

● Leverage Geth to generate the
expected transaction output

● “Execute” our representation and
compare the output

Validation

56

● Construct test cases using historical
transactions

● Leverage Geth to generate the
expected transaction output

● “Execute” our representation and
compare the output

Validation

Transactions

Total 15,855 (100.0 %)

57

● Construct test cases using historical
transactions

● Leverage Geth to generate the
expected transaction output

● “Execute” our representation and
compare the output

Validation

Transactions

Total 15,855 (100.0 %)

Success 15,345 (96.8%)

58

● Construct test cases using historical
transactions

● Leverage Geth to generate the
expected transaction output

● “Execute” our representation and
compare the output

Validation

Transactions

Total 15,855 (100.0 %)

Success 15,345 (96.8%)

Failures 510 (3.2%)

59

● Construct test cases using historical
transactions

● Leverage Geth to generate the
expected transaction output

● “Execute” our representation and
compare the output

Validation

Transactions

Total 15,855 (100.0 %)

Success 15,345 (96.8%)

Failures 510 (3.2%)

 Construction Failures 196 (1.2%)

60

● Construct test cases using historical
transactions

● Leverage Geth to generate the
expected transaction output

● “Execute” our representation and
compare the output

Validation

Transactions

Total 15,855 (100.0 %)

Success 15,345 (96.8%)

Failures 510 (3.2%)

 Construction Failures 196 (1.2%)

 Comparison Failures 314 (2.0%)

61

Use Case

62

Erays: Function Fuzzy Hash

Binary X

Function A

Function B

Function C

63

Erays: Function Fuzzy Hash

Binary X

Function A

Hash A
0x746f7563...

Function B

Function C

Compute Fuzzy Hash

64

Erays: Function Fuzzy Hash

Binary X

Function A

Hash A
0x746f7563...

Function B

Function C

Hash B
0x6865646d...

Hash C
0x79737061...

65

Erays: Code Sharing

Binary X

Function A

Hash A
0x746f7563...

Function B

Function C

Hash B
0x6865646d...

Hash C
0x79737061...

Hash D
0x67686574...

Binary Y

Function B

Function D

66

Case Studies

67

Case Study: High Value Contracts

● Look for opaque contracts with large
Ether balance ~ $590M

● Multi-signature wallets likely used by
the Gemini exchange

Multi-Signature Wallet: signature scheme
requiring k-of-N signatures.

● Security best practice for large sums
of money

68

Case Study: High Value Contracts

● Look for opaque contracts with large
Ether balance ~ $590M / 3 contracts

● Multi-signature wallets likely used by
the Gemini exchange

● Interesting, time-dependent
withdrawal policies

69

Multi-Signature Wallet: signature scheme
requiring k-of-N signatures.

● Security best practice for large sums
of money

Time Dependency Hazard

● Found block.timestamp used in
contract

● Erays reveals it is used to control the
delay of withdrawal requests

● Useful auditing tool, even for opaque
contracts

70

Case Study: Duplicate Contracts

● Look for opaque contracts with the
most instances

● Exchange user wallets
○ Poloniex: ~350,000 contracts
○ Yunbi: ~90,000 contracts

● A different approach to handling user
funds

71

Case Study: EtherDelta Arbitrage

● Decentralized token exchanges
(DEX) operate entirely on-chain
○ Etherdelta

Case Study: EtherDelta Arbitrage

● Decentralized token exchanges
(DEX) operate entirely on-chain
○ Etherdelta

● Evidence of arbitrageurs

Arbitrageur
Behavior

DEX

1. Buy
@0.009

2. Sell
@0.01

Case Study: EtherDelta Arbitrage

● Decentralized token exchanges
(DEX) operate entirely on-chain
○ Etherdelta

● Evidence of arbitrageurs

● Executing a buy/sell mismatch for a
profit

Arbitrageur
Behavior

DEX

1. Buy
@0.009

2. Sell
@0.01

Case Study: EtherDelta Arbitrage Bots

● Arbitrageurs must publish gadgets to
facilitate arbitrage

● Create functions to validate the order
and new trade

● Implement atomic batch trades (or
fail)

Arbitrageur
Behavior

1. Buy
@0.009

2. Sell
@0.01

Gadg. DEX

Buy/Sell
Trades

Assert or
revert both

trades

Case Study: CryptoKitties

76

77

Case Study: CryptoKitties

● On-chain game code is published
with source code

● Game mechanism well understood

78

Case Study: CryptoKitties

● Developers who know the algorithm
aren’t allowed to play the game!

79

Case Study: CryptoKitties

● Developers who know the algorithm
aren’t allowed to play the game!

● So obviously we had to target this
function

80

Case Study: CryptoKitties

● The block hash is used to inject
random mutations into genes and to
select a parent for a gene

81

256-bits

…. 1234

Randomness(block hash)

234345

Matron Sire

Child
2345

Case Study: CryptoKitties

● The block hash is used to inject
random mutations into genes and to
select a parent for a gene

● Found a more effective breeding
strategy

82

256-bits

…. 1234

Randomness(block hash)

234345

Matron Sire

Child
2345

Case Study: CryptoKitties

● The block hash is used to inject
random mutations into genes and to
select a parent for a gene

● Found a more effective breeding
strategy

● Don’t rely on security through
obscurity!

83

256-bits

…. 1234

Randomness(block hash)

234345

Matron Sire

Child
2345

Conclusion

● Ethereum smart contract ecosystem is largely opaque
○ ~ 1M contracts, 34K unique, 77.5% unique opaque

84

Conclusion

● Ethereum smart contract ecosystem is largely opaque
○ ~ 1M contracts, 34K unique, 77.5% unique opaque

● Erays converts EVM bytecode into higher level representations
○ https://github.com/teamnsrg/erays
○ yizhou7@illinois.edu

85

https://github.com/teamnsrg/erays
mailto:yizhou7@illinois.edu

Conclusion

● Ethereum smart contract ecosystem is largely opaque
○ ~ 1M contracts, 34K unique, 77.5% unique opaque

● Erays converts EVM bytecode into higher level representations
○ https://github.com/teamnsrg/erays
○ yizhou7@illinois.edu

● The utility of Erays is demonstrated in several case studies
○ High value wallets, exchange user wallets, arbitrage bots, CryptoKitties secret

algorithm

86

https://github.com/teamnsrg/erays
mailto:yizhou7@illinois.edu

