CommanderSong: A Systematic Approach For Practical Adversarial Voice Recognition

<u>Xuejing Yuan</u>^{1,2}, Yuxuan Chen³, Yue Zhao^{1,2}, Yunhui Long⁴, Xiaokang Liu^{1,2}, Kai Chen^{1,2}, Shengzhi Zhang^{3, 5}, Heqing Huang, XiaoFeng Wang⁶, and Carl A. Gunter⁴

¹SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
 ²School of Cyber Security, University of Chinese Academy of Sciences, China
 ³Department of Computer Sciences, Florida Institute of Technology, USA
 ⁴Department of Computer Science, University of Illinois at Urbana-Champaign, USA
 ⁵Department of Computer Science, Metropolitan College, Boston University, USA
 ⁶School of Informatics and Computing, Indiana University Bloomington, USA

Outline

- Background
- Motivation
- Approach
- Evaluation
- Conclusion

Background

Automatic speech recognition (ASR)

• Traditional attack

• Adversarial sample

Outline

- Background
- Motivation
- Approach
- Evaluation
- Conclusion

Motivation

Hidden voice command attack: noise-like voice command is abnormal

Dolphin attack: need a proper transmitter

Recent adversarial audio sample: is not effective in the physical world

So can we design an approach that is: using normal sound to make a physical world attack?

- ✓ Automatical
- ✓ Practical
- ✓ Surreptitious
- ✓ Spread
- ✓ Transferable

CommanderSong Attack

CommanderSong Attack

Challenges Of The Attack

• Human realization

• Influence of the speakers and environment

Outline

- Background
- Motivation
- Approach
- Evaluation
- Conclusion

Approach

• step1: WTA (WAV-To-API) attack

• step2: WAA (WAV-Air-API) attack

ASR system: Kaldi (open source platform)

Decoding Principle Of Kaldi

Decoding Principle Of Kaldi

Decoding Principle Of Kaldi

- pdf-id: indicates the probability of every phoneme (column number of the DNN output matrix)
- transition-id: uniquely identifies the HMM state transition
 (a sequence of transition-ids can identify a phoneme)

Example Of Kaldi Decoding Results

eh_{R}

15985_16190_16189_16189_16189_16189_1 6189_16189_16189_16189

k_I 31123_31380_31379_31379_31379_31379_3 1379_31379_31379_31379_31379_31379_

ow_E

39643_39898_39897_39897_39897_39897_3 9897_39897_39897_39897_39897_39897_39 897_39897_39897_39897_39897_39

Transition-ids sequence of the decoding "Echo".

Example of the relationship among the phoneme, pdf-id and transition-id.

Phonem e	HMM state	Pdf- id	Transitio n-id	Transitio n
	0	CO00	15985	0 → 1
eh_B	0 /	6383	15986	0→2
ala	/	5760	16189	self-loop
eh_B	/ 1	5760	16190	1→2

pdf-ids sequence: 6383, 5760,

WTA Attack Approach

Pdf-id sequence matching method

WTA Attack Approach

Pdf-id sequence matching method

WTA Attack Approach

WTA Attack samples for the real world attack?

WAA Attack Approach

 random noise model (easily generate and universally applicable)

Outline

- Background
- Motivation
- Approach
- Evaluation
- Conclusion

WTA attack results

Command	Success rate (%)
Okay google restart phone now.	100
Okay google flashlight on.	100
Okay google read mail.	100
Okay google clear notification.	100
Okay google airplane mode on.	100
Okay google turn on wireless hot spot.	100
Okay google read last sms from boss.	100
Echo open the front door.	100
Echo turn off the light.	100

WAA attack results

Command	Speaker	Success rate (%)
Echo ask capital one to make a credit card payment.	JBL speaker	90
	ASUS Laptop	82
	SENMATE Broadcast	72
	JBL speaker	96
Okay google call one one zero one one nine one two zero.	ASUS Laptop	60
one one mile one two zero.	SENMATE Broadcast	70

Human comprehension (a survey on Amazon Mechanical Turk)

- Have you ever heard this original song before?
- Do you think the song is abnormal?
- Where do you think the noise in the abnormal song comes from?
- How many times have you listened before you can recognize the words.

Human comprehension of the WTA attack samples

Music classification	Listened (%)	Abnormal (%)	Recognize Command (%)
Soft music	13	15	0
Rock	33	28	0
Popular	32	26	0
Rap	41	23	0

Human comprehension of the WAA attack samples

Song name	Listened (%)	Abnormal (%)	Noise-speaker (%)	Noise-song (%)
Did You Need It	15	67	42	1
Outlaw of Love	11	63	36	2
The Saltwater Room	27	67	39	3
Sleepwalker	13	67	41	0
Under neath	13	68	45	3
Feeling Good	38	59	36	4
Average	19.5	65.2	40	2.2

Transferability from Kaldi to iFLYTEK

Command	iFLYREC (%)	iFLYTEK Input (%)
Airplane mode on.	66	0
Open the door.	100	100
Good night.	100	100

Spread and attack iFlytek

Understanding Of The Attacks

Explaination of Kaldi and human recognize of the audios.

Defense

Audio turbulence defense

• Audio squeezing defense

Outline

- Background
- Motivation
- Approach
- Evaluation
- Conclusion

Conclusion

- Practical adversarial attack automatic speech recognition
- Can be transferred to iFlytek
- Can be spread through the Internet and radio
- Surreptitious to human