With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning

Bolun Wang*, Yuanshun Yao, Bimal Viswanath§
Haitao Zheng, Ben Y. Zhao

University of Chicago, * UC Santa Barbara, § Virginia Tech
bolunwang@cs.ucsb.edu
Deep Learning is Data Hungry

- High-quality models are trained using large labeled datasets
 - Vision domain: ImageNet contains over 14 million labeled images
A Prevailing Solution: Transfer Learning

Company X
Limited Training Data

+

Teacher

Transfer and re-use pre-trained model

Student

Highly-trained Model

Recommended by Google, Microsoft, and Facebook DL frameworks
Deep Learning 101

Photo credit: Google
In general, first K layers can be directly transferred ($K = N - 1$)

Insight: high-quality features can be re-used
Transfer Learning: Example

- Face recognition: recognize faces of 65 people

<table>
<thead>
<tr>
<th>Company X</th>
<th>Teacher (VGG-Face)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Transfer 15 out of 16 layers</td>
</tr>
<tr>
<td>10 images/person</td>
<td>900 images/person</td>
</tr>
<tr>
<td>65 people</td>
<td>2,622 people</td>
</tr>
</tbody>
</table>

Classification Accuracy

<table>
<thead>
<tr>
<th>Without Transfer Learning</th>
<th>With Transfer Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>93.47%</td>
</tr>
</tbody>
</table>
Is Transfer Learning Safe?

• Transfer Learning lacks diversity
 • Users have very limited choices of Teacher models
In This Talk

• Adversarial attack in the context of Transfer Learning

• Impact on real DL services

• Defense solutions
Background: Adversarial Attack

- Adversarial attack
 - Misclassify inputs by adding carefully engineered perturbation

\[+ \varepsilon \cdot \text{Imperceptible perturbation} \rightarrow \text{Misclassified as} \]
Attack Models of Prior Adversarial Attacks

• **White-box attack:** assumes full access to model internals
 • Find the optimal perturbation offline

• **Black-box attack:** assumes no access to model internals
 • Repeated query to reverse engineer the victim
 • Test intermediate result and improve

- **Not practical**
- **Easily detected**
Our Attack Model

- We propose a new adversarial attack targeting Transfer Learning

- Attack model

 - **Teacher**
 - White-box
 - Model internals are known to the attacker

 - **Student**
 - Black-box
 - Model internals are hidden and kept secure

Default access model today
- Teachers are made public by popular DL services
- Students are trained offline and kept secret
If two inputs match at layer K, then they produce the same result regardless of changes above layer K. Same as Teacher

$F(\cdot)$ $G(\cdot)$
How to Compute Perturbation?

• Compute perturbation (Δ) by solving an optimization problem
 • Goal: mimic hidden-layer representation
 • Constraint: perturbation should be indistinguishable by humans

\[\begin{align*}
X_s &: \text{source image} \quad T_K(X): \text{internal representation} \\
X_t &: \text{target image} \quad \text{at layer } K \text{ of image } X
\end{align*} \]

\[
\min Distance(T_K(X_s + \Delta), T_K(X_t)) \\
\text{s.t.} \quad \text{perturb_magnitude}(X_s + \Delta, X_s) < P_{\text{budget}}
\]

Minimize L_2 distance between internal representations

$DSSIM$: an objective measure for image distortion

Constrain perturbation
Attack Effectiveness

- **Targeted attack**: randomly select 1,000 source, target image pairs
- **Attack success rate**: percentage of images successfully misclassified into the target

Face recognition
- 92.6% attack success rate

Iris recognition
- 95.9% attack success rate
Attack in the Wild

• Q1: given Student, how to determine Teacher?
 • Craft “fingerprint” input for each Teacher candidate
 • Query Student to identify Teacher among candidates

• Q2: would attack work on Students trained by real DL services?
 • Follow tutorials to build Student using following services
 - Teacher A
 - Teacher B
 - Google Cloud
 - CNT
 - PyTorch
 • Attack achieves >88.0% success rate for all three services
In This Talk

• Adversarial attack in the context of Transfer Learning

• Impact on real DL services

• Defense solutions
Intuition: Make Student Unpredictable

- Modify Student to make internal representation deviate from Teacher
 - Modification should be unpredictable by the attacker → No countermeasure
 - Without impacting classification accuracy

Teacher

Transfer using an updated objective function

Robust Student

Updated objective function

$$\min \ CrossEntropy(y_{true}, y_{pred})$$

$$s.t. \ ||T(x) - S(x)||_2 > D_{th} \ for \ x \in X_{train}$$

Maintain classification accuracy

Guarantee difference between Teacher and Student
Effectiveness of Defense

<table>
<thead>
<tr>
<th>Model</th>
<th>Face Recognition</th>
<th>Iris Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Patching</td>
<td>Attack Success Rate</td>
<td>92.6%</td>
</tr>
<tr>
<td>After Patching</td>
<td>Attack Success Rate</td>
<td>30.87%</td>
</tr>
</tbody>
</table>

Change of Classification Accuracy:
- Face Recognition: $\downarrow 2.86\%$
- Iris Recognition: $\uparrow 2.73\%$
One More Thing

• Findings disclosed to Google, Microsoft, and Facebook

• What’s not included in the talk
 • Impact of Transfer Learning approaches
 • Impact of attack configurations
 • Fingerprinting Teacher
 • ...

18
Code, models, and datasets are available at
https://github.com/bolunwang/translearn

Thank you!