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Deep Learning is Data Hungry

• High-quality models are trained using large labeled datasets
• Vision domain: ImageNet contains over 14 million labeled images
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Where do small companies get such large datasets?



A Prevailing Solution: Transfer Learning

2

Company X Limited 
Training Data Highly-trained Model
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High-quality Model
Student A Student B Student CRecommended by Google, Microsoft, and Facebook DL frameworks

Teacher

Student
Transfer and re-use 
pre-trained model



Deep Learning 101

3Photo credit: Google



Transfer Learning: Details
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Transfer Learning: Example

• Face recognition: recognize faces of 65 people
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Teacher 
(VGG-Face)

900 images/person
2,622 people

Student
Transfer 15 out of 16 layers

10 images/person
65 people

Classification Accuracy
Without Transfer Learning With Transfer Learning

1% 93.47%

Company X



Is Transfer Learning Safe?

• Transfer Learning lacks diversity
• Users have very limited choices of Teacher models
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Same Teacher

Company A Attacker

Help attacker exploit all Student models

Company B



In This Talk

• Adversarial attack in the context of Transfer Learning

• Impact on real DL services

• Defense solutions
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Background: Adversarial Attack

• Adversarial attack
• Misclassify inputs by adding carefully engineered perturbation
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Attack Models of Prior Adversarial Attacks

• White-box attack: assumes full access to model internals
• Find the optimal perturbation offline

• Black-box attack: assumes no access to model internals
• Repeated query to reverse engineer the victim
• Test intermediate result and improve
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Not practical

Easily detected



Our Attack Model

• We propose a new adversarial attack targeting Transfer Learning

• Attack model
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StudentTeacher

Black-box

• Model internals are hidden 
and kept secure

White-box

• Model internals are known 
to the attacker

Default access model today
• Teachers are made public by popular DL services
• Students are trained offline and kept secret



Attack Methodology: Neuron Mimicry
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How to Compute Perturbation?

• Compute perturbation (∆) by solving an optimization problem
• Goal: mimic hidden-layer representation
• Constraint: perturbation should be indistinguishable by humans
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Minimize L2 distance between 
internal representations

Constrain 
perturbation

DSSIM: an objective measure 
for image distortion
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Attack Effectiveness

• Targeted attack: randomly select 1,000 source, target image pairs

• Attack success rate: percentage of images successfully misclassified into the target
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Source Adversarial Target

Face recognition
92.6% attack success rate

Source Adversarial Target

Iris recognition
95.9% attack success rate



Attack in the Wild

• Q1: given Student, how to determine Teacher?
• Craft “fingerprint” input for each Teacher candidate
• Query Student to identify Teacher among candidates

• Q2: would attack work on Students trained by real DL services?
• Follow tutorials to build Student using following services

• Attack achieves >88.0% success rate for all three services
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Student

Teacher A

Teacher B

Which Teacher is used?

Fingerprint input



In This Talk

• Adversarial attack in the context of Transfer Learning

• Impact on real DL services

• Defense solutions
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Intuition: Make Student Unpredictable

• Modify Student to make internal representation deviate from Teacher
• Modification should be unpredictable by the attacker → No countermeasure
• Without impacting classification accuracy
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Effectiveness of Defense

Model Face Recognition Iris Recognition

Before Patching Attack Success 
Rate

92.6% 100%

After Patching

Attack Success 
Rate

30.87% 12.6%

Change of 
Classification 

Accuracy
↓ 2.86% ↑ 2.73%
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One More Thing

• Findings disclosed to Google, Microsoft, and Facebook

• What’s not included in the talk
• Impact of Transfer Learning approaches
• Impact of attack configurations
• Fingerprinting Teacher
• … 
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Code, models, and datasets are available at 
https://github.com/bolunwang/translearn
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Thank you!


