
Security Namespace : Making Linux Security
Frameworks Available to Containers

Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios Pendarakis,
Zhongshu Gu and Trent Jaeger

Container vs. Virtual Machines

• Containers are operating system level virtualization environment for
running multiple isolated Linux systems on a single Linux control host

Image credit: Docker Inc. and RightScale Inc.

Is Kernel Sharing All Good?

• Container owners cannot leverage kernel security frameworks to
protect their containers
• I.e., cannot apply local security policies to govern integrity measurement,

code execution, mandatory access control, etc.

Integrity Attestation for Container

• On a container cloud, can a container owner attest integrity of his/her
containers to his/her customers?
• Exactly what Linux Integrity subsystem (a.k.a. IMA) is designed for

Process Measure

Policy Measurements

mmap() exte
nd

record

kernel

Integrity Attestation for Container (Cont.)

• But…
• Mixed measurements from different containers and host

Process

Measure

Policy Measurements

mmap()

exte
nd

record

kernel

Container1

Process

Container2

mmap()

Integrity Attestation for Container (Cont.)

• But…
• Mixed measurements from different containers and host
• Different versions of policies

Process

Measure

Policy1 Measurements

mmap()

exte
nd

record

kernel

Container1

Process

Container2

mmap()

Policy2

Integrity Attestation for Container (Cont.)

• But…
• Mixed measurements from different containers and host
• Different versions of policies

• And policies do not always agree with each other

Me: I am hosting a honeypot.
Let the IMA allow all the

vulnerable versions of software
Bank: Awesome decision!

I like Yuqiong’s policy.

Mandatory Access Control for Container

• MAC mechanisms can only be used to protect container host, but not
container
• An excerpt from Ubuntu LXC documentation (section AppArmor):

Goal: Security Namespace

• Can we virtualize/isolate security frameworks in Linux kernel to make
them available to containers?
• Just like how other kernel resources are virtualized/isolated for containers

• Ideally, we want:
• Each container can govern the security of its containerized processes
• Each container can independently define its security policies and access its

security states (e.g., audit logs, measurements)
• Security Invariant: a container cannot invalidate the security goal of other

containers or the container host, as expressed via their respective security
policies

Background: Namespaces in Kernel

Background: Namespaces in Kernel

Background: Namespaces in Kernel (Cont.)

• There are 6 7 namespaces isolating different types of kernel resources

Background: Namespaces and Container

• There are 6 7 namespaces isolating different types of kernel resources

Background: Namespaces and Container

• There are 6 7 namespaces isolating different types of kernel resources

Apache running in
the container

Docker Daemon

clone(CLONE_NEWIPC | CLONE_NEWNET |
CLONE_NEWPID | CLONE_NEWUTS | CLONE_NEWNEWNS)

hostname setup
rootfs setup
pivot root

mount /dev, /proc, /sys
IP, firewall setup
execve(Apache2)

Daemon continue running
in the native system

protected by IMA /AppArmor /
SELinux and etc.

CLONE_NEW IMA /AppArmor /SELinux

A Strawman Design

• Virtualize security framework into instances and divide control
• NSnative controls P0 , NS1 controls P1 and P2, and NS2 controls P3

• NSnative, NS1 and NS2 independently applies security policies

Security Framework
Instance 1

States Policy

Security Framework
Instance 2

States Policy

Security Framework
Instance 3

States Policy

P0
fork fork

new security ns

P1 P2 P3
fork

new security ns

NSnative NS1 NS2

Attack in Strawman Design

• Kernel security frameworks are no longer global

Attack in Strawman Design (Cont.)

• Kernel security frameworks are are no longer mandatory

Process P0

File

Process P1

Container1/
Security NS1

Container2/
Security NS2

I need my precious file to be
maintained as read-only

Let’s make it read-write
to my processes

Challenges

• Kernel security frameworks are designed to be global
• They control ALL processes running on a system (completeness for reference

monitor)
• But we should allow container owners to exercise control over limited set of

processes (i.e., his/her own containers)
• Kernel security frameworks are designed to be mandatory
• Only system admin may define security policies
• But we should allow container owners to make his/her security decisions

independently
• Relaxing the two requirements in a naïve way may compromise

security offered by security frameworks

Insights

• Insight 1 (to relax global requirement)
• Route an operation (i.e., system call) to ALL security namespaces whose

security might be affected by the operation
• Insight 2 (to relax mandatory requirement)
• Only allow an operation if all security namespaces affected by the operation

allow the operation

Solution Overview

Solution Overview

Solution Overview

Solution Overview

Solution Overview

Operation Router

• Key Task:
• Route an operation to all security namespaces whose security might be

affected by the operation
• How:
• Operation can be written as 3-tuple <subject, object, operation>
• Security namespace has implicit assumptions over subject and object

A Subject’s Perspective

• Implicit assumption of global
• A security framework controls all subjects stemming from the first subject

that it sees
• For native à all subjects forked from init (PID 1)
• For a container à all subjects forked from the first container process

• A subject may affect a security namespace
• If the subject is associated with or a descendant of that security namespace

A Subject’s Perspective (Cont.)

• A subject may affect a security namespace
• If the subject is associated with or a descendant of that security namespace

An Object’s Perspective

• Implicit assumption of mandatory
• Only operations explicitly allowed by a policy can be performed

• An object may affect a security namespace
• If it is visible to the security namespace

Process P0

File

Process P1

Container1/
Security NS1

Container2/
Security NS2

I need my precious file to be
maintained as read-only

Let’s make it read-write
to my processes

Solution Overview

Policy Engine

• Runtime conflicts affect usability
• An operation might be eventually denied even if a container allowed it
• Cannot debug since security namespaces are isolated
• So we detect and inform potential conflicts at policy load time

Implementation

• Namespace for two kernel security frameworks
• IMA (Integrity Measurement Architecture) for integrity attestation

• ~1.1K LOC in C
• https://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity.git/log/?h=next-

namespacing-experimental
• AppArmor for mandatory access control

• ~1.5K LOC in C

• Less than 20 LOC extension to Docker libcontainer
• Essentially use CLONE_NEWIMA & CLONE_NEWAPPARMOR flags in clone

system call

Evaluation: AppArmor Namespace

Evaluation: AppArmor Namespace (Cont.)

• Enforce both host profile (Docker profile) and application (in
container) profile at the same time
• Both profiles are shipped as default in Ubuntu

Evaluation: AppArmor Namespace (Cont.)

• Enforce both host profile (Docker profile) and application (in
container) profile at the same time
• Both profiles are shipped as default in Ubuntu

Container wants to
allow something
that container host
denies

Sharing, Sharing, Conflicts, Conflicts

• /proc, /sys and /dev has been historically used as interfaces between
kernel and userspace
• Many objects under them (e.g., /proc/uptime) may break container isolation

• Many applications need to access objects under them

• Solution
• Fine tune both host and application profiles (e.g., do firefox need “/proc/ r”)

• Avoid sharing
• Device namespaces to isolate /dev? (e.g., NTP à “/dev/pps[0-9]* rw”)

• Multi-layered filesystems to conceal /proc?

Evaluation: Performance

• System call latency added due to namespace
• Common system calls hooked by LSM (e.g., read, write, mmap, execve)

Evaluation: Performance

• System call latency added due to namespace
• Common system calls hooked by LSM (e.g., read, write, mmap, execve)

Evaluation: Performance

• System call latency added due to namespace
• Common system calls hooked by LSM (e.g., read, write, mmap, execve)

• Application performance
• Containerized Apache throughput (w and w/o application profile)

Summary

• Existing containers cannot leverage kernel security frameworks to
apply local security control
• A naïve virtualization may break security offered by security frameworks

• The routing based security namespace design preserves security
while making kernel security frameworks available to containers

Backup Slides

SELinux Namespace

• Routing based design largely apply, but…
• Challenge 1: filesystem labeling
• Subjects and objects will have multiple labels?

• Multiple security attributes
• Runtime manipulation of security attributes without reboot

• Challenge 2: policy conflict detection
• Statically decide potential labels for subjects?

• Hard to predict due to the complexity of transition rules

