FROM PATCHING DELAYS TO INFECTION SYMPTOMS: USING RISK PROFILES FOR AN EARLY DISCOVERY OF VULNERABILITIES EXPLOITED IN THE WILD

Chaowei Xiao¹, Armin Sarabi¹, Yang Liu², Bo Li³, Mingyan Liu¹, Tudor Dumitras⁴

August 16, 2018

¹University of Michigan, Ann Arbor
²Harvard University / UC Santa Cruz
³University of Illinois at Urbana–Champaign
⁴University of Maryland, College Park
INTRODUCTION
• Attackers are in a constant race with end-users/enterprises.
• Attackers are in a constant race with end-users/enterprises.
• It is estimated that on median, only 14% of vulnerable hosts are patched when exploits are made available.
 • Recent examples: WannaCry, NotPetya, Equifax.
• Attackers are in a constant race with end-users/enterprises.
• It is estimated that on median, only 14% of vulnerable hosts are patched when exploits are made available.
 • **Recent examples:** WannaCry, NotPetya, Equifax.
• Only a small portion of vulnerabilities are ultimately exploited.
Rank ordering vulnerabilities by severity enables prioritization of patch deployment.

Current state of exploit detection

• Intrinsic (a priori) attributes: Not strong predictors.
• Crawling social media sites: Only a few days of lead time.

Our contribution

• Automated detection using statistical evidence of exploitation from real-world measurements.
• We achieve a 90% true positive rate, with a 10% false positive rate using 10 days of post-disclosure observations.
• The current median time for detection is 35 days.
Background and Motivation

Rank ordering vulnerabilities by severity enables prioritization of patch deployment.

Current state of exploit detection

- Intrinsic (a priori) attributes: Not strong predictors.
- Crawling social media sites: Only a few days of lead time.
Rank ordering vulnerabilities by severity enables prioritization of patch deployment.

Current state of exploit detection

- Intrinsic (a priori) attributes: Not strong predictors.
- Crawling social media sites: Only a few days of lead time.

Our contribution

- Automated detection using statistical evidence of exploitation from real-world measurements.
- We achieve a 90% true positive rate, with a 10% positive rate using 10 days of post-disclosure observations.
 - The current median time for detection is 35 days.
• One can infer the main the cause of infection by comparing symptoms of infection with risk (vulnerability) patterns.
ISPs with similar symptom signals (i.e., number of infected hosts).

- One can infer the main cause of infection by comparing symptoms of infection with risk (vulnerability) patterns.
- We combine this idea with community detection and compare symptoms of similar individuals (ISPs) with their risk behavior.
DATASETS AND PROCESSING
Datasets

Symptoms

• Spam blacklists: CBL, SBL, SpamCop, UCEPROTECT, and WPBL (Jan 2013 - Present).
Datasets

Symptoms

• Spam blacklists: CBL, SBL, SpamCop, UCEPROTECT, and WPBL (Jan 2013 - Present).

Risk behavior

• Patching data for 7 applications from WINE (Feb 2008 - Jul 2014).
 • Chrome, Firefox, Thunderbird, Safari, Opera, Acrobat Reader, Flash.
• Publicly available vulnerabilities (CVEs) from NVD.
Datasets

Symptoms

- Spam blacklists: CBL, SBL, SpamCop, UCEPROTECT, and WPBL (Jan 2013 - Present).

Risk behavior

- Patching data for 7 applications from WINE (Feb 2008 - Jul 2014).
 - Chrome, Firefox, Thunderbird, Safari, Opera, Acrobat Reader, Flash.
- Publicly available vulnerabilities (CVEs) from NVD.

Ground-truth

- Real-world exploits from SecurityFocus, Symantec, and Intrusion Protection Signatures (IPS).
- 56 exploited-in-the-wild (EIW) and 300 not-exploited-in-the-wild (NEIW) vulnerabilities.
Reduce the number of nodes by aggregating at the ISP level.

- Compute pairwise similarity matrices for the aggregated signals.
• Reduce the number of nodes by aggregating at the ISP level.
• Compute pairwise similarity matrices for the aggregated signals.
• For each CVE, this results in two weighted graphs (one for symptoms and one for risk behavior).
• Use community detection (BigClam) to identify groups of ISPs exhibiting similar symptoms for the 10-day period following each vulnerability disclosure.
• We investigate whether the same community structure also applies to risk behavior signals.
Measuring the Association between Risk and Symptoms

Intra- and inter-cluster similarities. Each node represents an ISP.

- Using the community structure obtained from symptoms, we compute the intra-cluster and inter-cluster similarities of risk behavior signals for each CVE.
Distribution of intra- and inter-cluster risk similarities for a NEIW (left) and a EIW (right) vulnerability.

- We observe a statistically significant distinction between EIW and NEIW vulnerabilities.
- **Conjecture:** A higher intra-cluster similarity is an indication of active exploitation.
EVALUATION
Post-disclosure

- **Community**: 20-bin histogram of the difference in distribution between intra-cluster and inter-cluster similarities.
Feature Sets

Post-disclosure

- **Community**: 20-bin histogram of the difference in distribution between intra-cluster and inter-cluster similarities.
- **Raw**: Risk and symptom similarity matrices.
Feature Sets

Post-disclosure

- **Community**: 20-bin histogram of the difference in distribution between intra-cluster and inter-cluster similarities.
- **Raw**: Risk and symptom similarity matrices.
- **Direct**: 20-bin histogram of row-by-row correlation between the two similarity matrices.
Feature Sets

Post-disclosure

- **Community**: 20-bin histogram of the difference in distribution between intra-cluster and inter-cluster similarities.
- **Raw**: Risk and symptom similarity matrices.
- **Direct**: 20-bin histogram of row-by-row correlation between the two similarity matrices.

Intrinsic

- Tokens extracted from vulnerability descriptions, e.g., *remote*.
- CVSS scores summarizing the severity of each vulnerability.
Training

- Train Random Forests on different feature sets.
- Use 5-fold cross validation and average performance over 20 rounds.

![ROC Curve](image)

- Using all features we observe a 96\% AUC.
- Community+Intrinsic features achieve a 95\% AUC.
- Performance is greatly improved using both intrinsic (a priori) and post-disclosure (a posteriori) features.
Training

- Train Random Forests on different feature sets.
- Use 5-fold cross validation and average performance over 20 rounds.

Accuracy of trained models

- Using all features we observe a 96% AUC.
Classifying EIW Vulnerabilities

Training

- Train Random Forests on different feature sets.
- Use 5-fold cross validation and average performance over 20 rounds.

Accuracy of trained models

- Using all features we observe a 96% AUC.
- Community+Intrinsic features achieve a 95% AUC.
Classifying EIW Vulnerabilities

Training

- Train Random Forests on different feature sets.
- Use 5-fold cross validation and average performance over 20 rounds.

Accuracy of trained models

- Using all features we observe a 96% AUC.
- Community+Intrinsic features achieve a 95% AUC.
- Performance is greatly improved using both intrinsic (a priori) and post-disclosure (a posteriori) features.
The proposed technique can also be applied sooner/retrospectively.
The proposed technique can also be applied sooner/retrospectively.

CVE-2013-0640

- Disclosed on 02/13/2013, affecting Adobe Acrobat Reader.
- We detect exploitation for this CVE on the disclosure date.
- We were also able to find proof of zero-day exploits for this CVE.

CVE-2013-5330

- Disclosed on 11/12/2013, affecting Adobe Flash Player.
- The earliest exploit report date for this CVE is 01/28/2014.
- However, our system detected this vulnerability on the disclosure date, indicating a possible zero-day exploit.
The proposed technique can also be applied sooner/retrospectively.

CVE-2013-0640
- Disclosed on 02/13/2013, affecting Adobe Acrobat Reader.
- We detect exploitation for this CVE on the disclosure date.
- We were also able to find proof of zero-day exploits for this CVE.

CVE-2013-5330
- Disclosed on 11/12/2013, affecting Adobe Flash Player.
- The earliest exploit report date for this CVE is 01/28/2014.
- However, our system detected this vulnerability on the disclosure date, indicating a possible zero-day exploit.
Discussion and Conclusion
Practical utility

- **Enterprises**: Prioritizing patch deployment, risk assessment.
- **Software vendors**: Development of patches for critical CVEs.
- **ISPs**: Identify at-risk populations to encourage prompt action.
Discussion

Practical utility

- **Enterprises:** Prioritizing patch deployment, risk assessment.
- **Software vendors:** Development of patches for critical CVEs.
- **ISPs:** Identify at-risk populations to encourage prompt action.

Data imperfections

- Malicious activities from multiple sources, e.g., different CVEs, pay-per-install, etc.
- Infections that do not generate spam.
- Aggregation at a coarse level can lead to only observing the averages of behavior.
Early exploit detection

- We can achieve a true positive rate of 90%, and a false positive rate of 10% using 10 days of post-disclosure data.
- The current median time for detection is 35 days, and 80% of reported exploits are detected beyond 10 days.
- Combining intrinsic and post-disclosure (community) features results in a robust classifier.
Early exploit detection

- We can achieve a true positive rate of 90%, and a false positive rate of 10% using 10 days of post-disclosure data.
- The current median time for detection is 35 days, and 80% of reported exploits are detected beyond 10 days.
- Combining intrinsic and post-disclosure (community) features results in a robust classifier.

Future directions

- Appending additional datasets of symptomatic data to build a more robust system.
- Using Internet scans to identify at-risk servers/networks.
Thank You

Questions?