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*»* Motivation

» Public key crypto is essential for modern security
» Secure exchange of session keys

» Verifying identity of systems and users
» And alot more

» Private keys are a highly valuable asset
» So attackers want them

» And we don’t want attackers to get them



“*Public Key Crypto

» Good public key crypto (e.g. RSA)

» Designed to make private keys very, very hard to recover
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“* Analog Side-Channel Attacks

» But cryptographic implementation runs on real hardware
» Logic gates switch, causing current flow

» Currents flowing create changes in surrounding EM field

Side-channel information
helps recover the private key




» Message randomization (blinding)

“* Analog Side-Channel Attacks

» Prevents chosen-plaintext and other message-dependent attacks

» But... when message-independent operations use the key
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Side-channel information,
alone,

eventually enables efficient
recovery of the private key



“* Analog Side-Channel Attacks

» One&Done

» Message does not matter (message blinding does not help)

» Multiple “traces” not needed (exponent blinding does not help)

Side-channel information alone,
in a single encryption/signing,
enables efficient recovery of the
entire private key



“*OpenSSL’s RSA Implementation

» BN mod exp montgomery consttime()

» Computes x¢ mod m, where d is the secret exponent
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b=bits —1:
while (b>=0){ < For each fixed-size “window”
wval=0;

rine the For each bit in the window

sgquaring In resi
for (i=0:1<w:i++) {

BN_mod_mul(v,v,v.,m); —— Square the result (V=V2)

wval < <=1
g’\"a{+=BN-iS—bit-Set<d-b):<— Look up one bit of d and add to wval
} :

Mulitply window’s result

Into ",‘:.

BN_hl.od_mu»lh( v,V Cl[ ;v\f‘arl I‘).: | — MUltlply result with xwval

! Look up precomputed xwval



*»»Side-Channel Attacks on OpenSSL’s RSA

» BN mod exp montgomery consttime()

» Computes x¢ mod m, where d is the secret exponent

1 b=bits —1;

2 while (b>=0){ < For each fixed-size “window”

3 wval=0;

4 // Scan the window

5 aring the re For each bit in the window

6 for (| =0; |<\\ 1++) {

7 BN.mod iy v vom): «——— Square the result (v=v?)

8 C\ al <<=1:

. A= BN s bl ser(d, bl’ Get bit from d, add to wval Mitigation (new)
T ) .

12 // Mulit ply window 's result

13 // into the overall re |
14 BI\_mod mul(v,v, ct[\nal I) MUItlply reSU|t Wlth vaa Message B'Iﬂdlng
15 }

¢Look up precomputed xwval

\% Scatter-Gather



Samsung o
Galaxy Alcatel |deal A13-OLinuXino

Centura
SCH-S738C



¢ Side Channel Analysis

» Recent advances in side-channel-based program monitoring
» Camelia, our DARPA LADS project

» Uses analog signals to monitor computational activity
to detect control flow deviation and/or execution of unknown code

* Found that even a single-instruction control-flow can be detected
e But...

» Constant-time implementation — no key-dependent CF

» Every encryption has the same CF sequence

e (Can’t use CF differences for attack

* But can use the (very stable and predictable) signal features and timing
to tell us exactly where 1n the signal BN is_bit set is executing
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¢ Attack Approach

Constant-time Montgomery Multiplication Another Constant-time

Montgomery Multiplication

to square the result i =l
Wl'um

onst-Time

Easyto Find '

1
Window-value

update
6 for (i1=0i<wii++) {
7 mm) BN_mod_mul(v,v,v,m);
8 wval <<=1;
9 wval+=BN_is_bit_set(d.b):
10 b——;
11 }
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How well does this recover bits of <d,,d >?

» Training on 15 private-key RSA decryptions

» Recover bits of secret exponents using only one decryption
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“*Full RSA Key Recovery

» We have dp and dq but with

» Erasures — could not find where the bit’s signal is

» Errors — found the bit’s signal, but misclassifiedit (0 vs. 1)
» Existing branch-and-prune algorithms

» Prune partial solutions when group of bits has too many errors
» Assumes errors are uniformly distributed
* Our errors often occur in bursts

* Does not explicitly handle erasures

» Prune partial solutions that disagree with known bits of <d ,d >

» Can’t handle errors (no bits truly “known)
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“*Full RSA Key Recovery

» We have dp and dq but with

» Erasures — could not find where the bit’s signal is

» Errors — found the bit’s signal, but misclassifiedit (0 vs. 1)
» Our algorithm

» Take partial solution with fewest disagreement overall
* Known-to-be-unknown bits (erasures) not counted

» Expand that partial solution by one bit position
* Prune expansions that violate relationships between p,q,n,dp,and dq

» Efficient implementation, nearly all checks use only scalars (not BNs)

» Repeat
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“*Recover RSA key from <d,,d > with errors

1,000,000.00
—Errors
100,000.00 — Erasures
"""" 50% Mix

10,000.00

Key Search Steps

1,000.00
0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

>

Our <d,,d,>results ° Key search using one i7 core:
(errors+erasures) 500K steps / second!
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**More in the paper

» Train on one device, attack another
» Only slightly worse than same-device (still 100% key recovery)

» Similar attack on sliding-window implementation
» Used in prior versions of OpenSSL
» Prior attacks extract enough bits to sometimes allow full-key recovery

» One&Done recovers nearly all bits in one private-key encryption,
recovered full key every time



s Mitigation

» Fundamental enabler of the attack
» Several instructions have very few possibilities for their operands
BN is bit set returns either O or 1
» No need to get bits one at a time
» A 5-bit fixed window needs 5 consecutive bits
* Don’t have to get them one at a time and shift into wval

» So we take an entire word’s worth of bits each time,
mask to window-size only before wval 1s needed

» Takes only a little longer than getting one bit!
» But done only once per window!
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“*Results after mitigation
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** Conclusions

» Analog side-channel attack on OpenSSL’s
constant-time modular exponentiation implementation
» Precise timing thanks to constant-timeness of the implementation
» Highly accurate thanks to one-secret-bit-at-a-time implementation

» Entire private key recovered from only one use of that key
» Attack not affected by blinding

» Attack directly obtains exponent bits, message bits not relevant
» Exponent blinding does not help agains single-trace attacks

» Mitigation: look up groups of secret bits, not individual bits

%%
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Thank yout!

Questions-?



