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Attribute Inference Attacks

» Input: User’s public data

. . .
»Output: User’s private attributes (Public data, Private attribute)

»E.g. In social media, attacker can use

machine learning classifier to infer pypiic data

Machine \ Private attributes

learning
classifier

user’s private attributes.
JCambridge Analytica

»Private attributes and public data are statistically correlated



Attribute Inference Attacks are Pervasive

»Recommender systems
dPublic: Rating scores
Private: Gender

»Mobile apps
Public: User’s smartphone’s aggregate power consumption
dPrivate: Locations

» Website fingerprinting
(JPublic: Network traffic
JPrivate: Websites

» Side-channel attacks
dPublic: Power consumption, processing time
Private: Cryptographic keys



Existing Defenses

» Game-theoretic methods:

[ Pros: Defend against optimal inference attacks
O Cons: Computationally intractable

» Heuristic methods:

O Pros: Computationally tractable

Q Cons:
O Large utility loss
O Direct access to user’s private attribute value

» Local Differential Privacy (LDP)

O Pros: Rigorous privacy guarantee
O Cons: Large utility loss



Our Detfense: AttriGuard

» Computationally tractable

» Small utility loss
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Threat Model

True public data Noisy public data Private attributes
| > |Defender| ! D | D
policy

» Policy A: Modify Exist
» Policy B: Add New
» Policy C: Modify Add



Challenges

» The defender doesn’t know the attacker’s classifier C,

dThe defender itself learn a classifier (7

U Transferability: similar classification boundaries

» Defender has no access to user’s true private attribute value

U Find a mechanism to add random noise

 Output distribution of defender’s classifier approaches certain target
probability distribution that defender desires



Metric

» Difference between output distribution of defender’s classifier q
and target probability distributionp

)2

JKL-divergence: KL(p||lq)=  p,log
l ql

» Utility loss:
Qd 7, norm: d(x,X+r)= Hr”o

2 N

user’s true public  user’snoisy public noise vector
data vector data vector



Attribute-inference-attack Defense Problem

» Input:
U noise-type-policy
U utility-loss-budget
U target probability distribution
U defender s classifier

 user’s true public data.

»Output: Mechanism M that adds random noise

O M (r|x)is the conditional probability that defender will add noise r to user’s
true public data X

dSample from M to add noise



Attribute-inference-attack Defense Problem

M" =argmin KL(p || q)
subjectto E(d(x,x+r))<f3
> ( :output distribution of defender’s classifier C

g. =Pr(C(x+r)=i)= M (r | x)

r|C(x+r)=i



Overview of AttriGuard

» Challenge to solve the optimization problem:

The probabilistic mapping X —> X+ is exponential to the
dimensionality of X

L Categorize noise space into /27 groups to solve the challenge

x+r ) Output of C
0 ' > Class 1
X+tr,
mappin S Output of C
: Pp g> Xtr, . P » Class 2
X+ri+1 .
| . Output of C
X+rk” 2 . P > Class m
x+rkn1

- J
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Two-Phase Framework

»Phase I: For each noise group, find a minimum noise as representative
noise

»Phase II: Simplify the mechanism A" to be a probability distribution
over m representative noise



Phase 1

»Find minimum noise r; for each group such that defender’s classifier
outputs class 7 given noisy public data input

I, = arg min HI'HO

subject to C(X+r) =1



Phase 1

» The optimization problem can be viewed as evasion attacks to the
defender’s classifier

» Existing evasion attacks are insufficient
» Not consider different noise-type-policy

» We propose PANDA based on Jacobian-based Saliency Map Attack
(JSMA)

1 Consider noise-type-policy

1 Some entries in user’s public data can be decreased while other entries can be
increased in PANDA while all entries can either be increased or decreased in JSMA



Phase 11

» Transform original optimization problem into following convex
optimization problem:

M =argmin KL(p || M)
M

subjectto Y M,|r| <B \
i=l1

r,.\o

M 1s a probability distribution,
M. >0.Yie{l2,. . m and M. denote the probability

select noise I
> M, =1
i=1
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Evaluation Dataset
» A review dataset from Gong and Liu (USENIX Security’16)

» Attributes considered: 25 cities

> Basic statistics

#Users #Happs #ave. apps
16,238 10,000 23.2

» Training and Testing:
U Training: 90% of users
 Testing: the remaining users



Attribute Inference Attacks

» Defense unaware attack
] Baseline attack (BA-A)
 Logistic regression (LR-A)
J Random forest (RF-A)
1 Neural network (NN-A)

» Robust classifier
] Adversarial training (AT-A)
U Defensive distillation (DD-A)
[ Region-based classification (RC-A)

» Detectnoise
1 Detect noise via low-rank approximation (LRA-A)



Inference Accuracy without Defense

Attack | Inference Accuracy
BA-A 0.10

LR-A 0.43

RF-A 0.44

NN-A 0.39

AT-A 0.39

DD-A 0.40

RC-A 0.38
LRA-A 0.27




Defender’s Classifier

» Neural Network (NN-D)
(J Use a different neural network architecture from attacker

» Logistic Regression (LR-D)



Comparing PANDA with Existing Evasion Attack
Methods

» Fast Gradient Sign Method (FGSM)
»Jacobian-based Saliency Map Attack (JSMA)

» Carlini and Wagner Attack (CW)



Average Noise
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FGSM adds orders of magnitude larger noise
PANDA adds smaller noise than JSMA
PANDA 1is comparable to CW
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Success Rate and Running Time

Success Rate

Running Time (s)

Method ' 435 TRND [LRD | NND
FGSM | 100% | 100% | 7.6 34
JSMA | 100% | 100% | 9.0 295

CW | 75% | 71% | 7.406 | 1,067.610

PANDA | 100% | 100% | 8.7 272

PANDA 1s slightly faster than JSMA

PANDA 1s around 800 times and 4,000 times faster
than CW for the LR-D and NN-D, respectively
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Inference Accuracy

0.3 1

0.2 1

0.1

AttriGuard 1s Eftective

ARRRER

BA-A |

LR-A
RF-A
NN-A
AT-A
DD-A
RC-A
LRA-A

M

—
—
~~-~—

1 2 3
Utility-loss Budget 3

2

D

27



Impact of the Target Probability Distribution
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Target probability distribution p, outperforms 2,
P :Estimated target probability distribution using training dataset
P. :Uniform probability distribution
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Impact of the Defender’s Classifier

0.4
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Inference Accuracy
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Utility-loss Budget (3

Attacker’s classifer:
Neural Network(NN-A)

AttriGuard 1s better when attacker and defender use the same classifier
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Impact of Different noise-type-policies
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Inference Accuracy
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Utility-loss Budget 3

Modify Add outperforms Add New, which outperforms Modify Exist
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Comparing AttriGuard with Existing Defenses

» Correlation-based Methods
A BlurMe
d ChiSquare

» Approximate game-theoretic method
J Quantization Probabilistic Mapping(QPM)

» Local Differential Privacy
JLDP-SH



Comparing AttriGuard with Existing Defenses
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AttriGuard 1ncurs smaller utility-loss



Comparing AttriGuard with Existing Defenses
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AttriGuard incurs smaller relative recommendation precision loss
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Conclusion

» AttriGuard can defend against attribute inference attacks with a small
utility loss

»Evasion attacks/Adversarial examples can be used as defensive
techniques for privacy protection

» AttriGuard significantly outperforms existing defenses



