
SHIELDING SOFTWARE 
FROM PRIVILEGED 

SIDE-CHANNEL ATTACKS
Xiaowan Dong University of Rochester

Zhuojia Shen University of Rochester

John Criswell University of Rochester

Alan Cox Rice University

Sandhya Dwarkadas University of Rochester



OS-Launched Side-Channel Attacks

• Applications assume OS is secure, 
however...

• OS can be compromised 
• Buffer overflows, information leak

• Shielding systems like Intel SGX can 
protect confidential application data from 
direct corruption

• A compromised OS can still launch side-
channel attacks

2

Applications

OS

Shielding System

Powerful side-channel attacks

Operating Sytems

Applications



OS-Launched Side-Channel Attacks

3

CPU

L1 
Cache

TLB

CPU

L1 
Cache

TLB

L2 Cache

Last-level Cache

• Exacerbate existing side channels
• Infer the victim’s behavior based on 

shared architectural states (caches, 
TLBs)

• Control system events to alleviate 
noise

• Introduce new side channels
• Trace page faults

• Monitor page table updates

Core 1 Core 2



Why Shielding Systems Don’t Help

• Shielding systems are supposed to protect confidential application data from 
compromised OS, however…

• Page table is still managed by untrusted OS

• The OS and other untrusted applications still share architectural states with 
applications needing protection (Caches, TLB, etc.)

4



We focus on defending against page table side-
channel and Last-level cache (LLC) side-channel 
attacks from the OS kernel

5



Outline

• Examples of page table and cache side-channel attacks

• Background on Virtual Ghost

• Apparition

• Performance evaluation

6



Outline

• Examples of page table and cache side-channel attacks

• Background on Virtual Ghost

• Apparition

• Performance evaluation

7



Page Table Side Channels

• Infer victim’s memory access behavior

• Tracing page faults
• Trigger page fault on every memory access

• Requires page table modification

• Can be used to recover entire secret document [1]

• Scanning ACCESS/DIRTY bit of page table entries
• Monitor first memory read/write

• First memory read/write sets ACCESS/DIRTY bit

• Requires page table reads

8

[1] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side channels for 
untrusted operating systems. Oakland. 2015.



LLC Side Channel: Prime + Probe Attack 

• Attacker Infers the cache line 
accessed by the victim

• Prime: access

• Idle: while the victim accesses

• Probe: access      again
• If latency is longer, the victim has 

replaced       with 

• Flush + Reload has a similar 
rationale

9

Core 1 Core 2

LLC

Main Memory
Victim

attacker



We Need to Prevent Compromised OS 
from Reading or Writing…
• Confidential application data

• Page tables containing translations for confidential application data

• Cache lines of confidential application data

We leverage a shielding system called Virtual Ghost that already  

• Prevents OS from reading and writing confidential application data

• Controls how OS configures page table

10



Outline

• Examples of page table and cache side-channel attacks

• Background on Virtual Ghost

• Apparition

• Performance evaluation

11



Background on Virtual Ghost

• A compiler-based virtual machine to protect 
application data from OS kernels

• Ports OS to virtual instruction set (V-ISA)

• Uses software fault isolation

• Forces OS kernel to invoke specific instructions to 
• Manipulate program state (e.g., context switch) 

• Configure hardware state (e.g., MMU)

• Does not mitigate side-channel attacks

12

Applications

Virtual Ghost VM

Processor

OS Kernel V-ISA

N-ISA



Protected Memory Regions

• OS cannot access protected memory 
regions
• Secure user space 

• Private to each application

• Virtual Ghost space 

• Only accessible to Virtual Ghost VM

• Used for saving internal data structures

13

User 
Space

Secure User 
Space

Virtual Ghost 
Space

Kernel 
Space

Virtual address space



Outline

• Examples of page table and cache side-channel attacks

• Background on Virtual Ghost

• Apparition

• Performance evaluation

14



Apparition

• Virtual Ghost + page table and LLC side-channel defenses

• Control native code generation of the kernel
• Ensure the kernel is instrumented

15

Applications

Apparition VM

Processor

OS Kernel V-ISA

N-ISA



PAGE TABLE 
SIDE-CHANNEL 

DEFENSES

16



Page Table Side-Channel Defenses 

• Direct map: a range of virtual 
memory mapping the entire physical 
memory as a single block

• Page table pages normally accessed 
via direct map

• Prevent OS from reading or writing 
the page table of the protected 
memory regions

• Remove the entry mapping the page 
table page from the kernel’s direct 
map

17

User 
Space

Secure User 
Space

Virtual Ghost 
Space

Kernel 
Space

Virtual address space

Default Direct map 
used by the kernel

Apparition VM 
internal Direct map

Physical address space

Page Table 
Page

Page table page 
for protected 

memory regions



Paging Side Channels Defenses

User 
Space

Secure User 
Space

Virtual Ghost 
Space

Kernel 
Space

• Lazy memory allocation
• OS maps the frame to the page when the 

application first reads or writes the page

• Side channel 
• Reveals paging behavior of the victim

• Defenses 
• Apparition VM manages secure user 

space memory allocation instead of OS

• Map physical frames upon allocation 
rather than at access time 

18
Virtual Address Space

malloc()



LLC 
SIDE-CHANNEL 

DEFENSES

19



Defenses against LLC Side Channels

• Partition LLC to isolate applications from OS

• Assign different cache partitions to OS, Apparition VM, and applications 
needing protection

20

Cache sets

Cache Ways

Apparition VM’s 
partition

Applications’ partition
OS’s partition



Intel Cache Allocation Technology

• Hardware feature that partitions LLC ways into subsets of smaller 
associativities

• Code can only evict cache lines in its partition, but can read any part of the 
LLC (no isolation on reads)

• Secure user space cache lines are not readable by OS

21

Cache sets

Cache Ways

Apparition VM’s 
partition

Applications’ partition
OS’s partition



Cache Partitioning Configuration
• Apparition VM 

• configures cache partitioning at boot time

• prevents the OS from reconfiguring the partitions via its virtual instruction set

• switches to the corresponding cache partition based on the code running 
(application, Apparition VM, and OS)

22

Cache sets

Cache Ways

Apparition VM’s 
partition

Applications’ partition
OS’s partition

Interrupt, 
trap, syscall



Private Cache Partitions for Applications
• Each application needing protection has its own cache partition

• First assign one cache partition to the first application

• Then divide it when more applications are scheduled

• Hardware partitions are shared when they run out
• Flush the cache over context switch between two applications sharing partitions

23

Cache sets

Cache Ways

App AApp A App B



Spectre and Meltdown Attacks

• Apparition helps prevent information leak via LLC side channel
• Mitigates LLC side-channel attacks

• Our HASP paper [1] presents SFI that mitigates Spectre variant 1 and 
Meltdown 

24

[1] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya Dwarkadas. 
Spectres, Virtual Ghosts, and Hardware Support. In HASP ‘18.



Outline

• Examples of page table and cache side-channel attacks

• Background on Virtual Ghost

• Apparition

• Performance evaluation

25



Methodology

Experiment environment

• 3.4 GHz Intel i7-6700 
hyperthreading quad-core 
processor

• 16-way 8 MB LLC

• 16 GB RAM

• 256 GB SSD

• FreeBSD 9.0 ported to Apparition

Applications

• Tested CPU-intensive, network-intensive and 
file-system benchmarks

• A microbenchmark (that randomly accesses 
a large array)

• OpenSSH client

• Bzip2

• GnuPG

• Clang

• Highlight the results of a subset of 
applications evaluated

26



Methodology

• Bzip2:compress a 32 MB file

• Clang: compile gcc-smaller.c from SPEC 
CPU 2017

• GnuPG: cryptography program signing 
files of varying sizes

• All the applications put the heap in 
secure user space
• We modified malloc() in libc.so

27

User 
Space

Secure User 
Space

Virtual Ghost 
Space

Kernel 
Space

Virtual address space

Heap



Page Table Side-Channel Defenses 
Overheads

• No additional overhead on Bzip2 
and Clang

• Disabling lazy memory allocation 
does not incur overhead

• Bzip2 and Clang access most of the 
heap allocated at runtime

28

1

1.01

1.02

1.03

1.04

1.05

Bzip2 Clang

Ex
e

cu
ti

o
n

 t
im

e
 n

o
rm

al
iz

e
d

 
to

 t
h

e
 n

at
iv

e
 (

x)

Apparition-w/o-def Apparition-PG-def



Page Table Side-Channel Defenses 
Overheads

File Size Apparition-
w/o-def 

Apparition-
PG-def

1 KB 9.5 ms 23.7 ms

2 KB 9.5 ms 23.8 ms

… x ms (x + 14) ms

16 MB 386.2 ms 400.1 ms

32 MB 761.8 ms 776.1 ms

• A constant overhead of 14 ms due to 
disabling lazy memory allocation 

• Additional cost of allocating and 
mapping 8 MB physical memory that 
is not accessed at runtime
• Due to alignment issue of the first 

invocation of malloc()

• Overhead negligible as file size 
increases

29

GnuPG signing files results. 



LLC Side-Channel Defenses

• Simple approach: We statically partition the LLC into three parts 
• Our processor supports four cache partitions

• Experimentally determined cache partitioning that is close to the baseline 
performance

30

Applications’ partition Apparition VM’s 
partition

OS’s partition

Application 12 ways

Apparition VM 2 ways

OS kernel 2 ways



LLC Side-Channel Defenses Overheads

• No additional overhead to Bzip2 
and Clang

31

1

1.01

1.02

1.03

1.04

1.05

Bzip2 Clang

Ex
e

cu
ti

o
n

 t
im

e
 n

o
rm

al
iz

e
d

 
to

 t
h

e
 n

at
iv

e
 (

x)

Apparition-w/o-def

Apparition-LLC-def



LLC Side-Channel Defenses Overheads

32

• Switching among different LLC 
partitions incurs overhead

• Larger file size      more read/write 
syscalls larger cache partition 
switching overhead 

• For 8 MB to 32 MB files, the 
overhead is negligible (1.05x on 
average)

GnuPG signing files results.

File Size Apparition-
w/o-defenses

Apparition-
LLC-def

1 KB 9.5 ms 12.1 ms

2 KB 9.5 ms 12.1 ms

… … …

4 MB 103.9 ms 108.0 ms

8 MB 198.6 ms 203.6 ms

16 MB 386.2 ms 394.6 ms

32 MB 761.8 ms 776.6 ms



Conclusion

• Compromised OS is powerful enough to exacerbate existing side channels 
and introduce new side channels

• A compiler-based approach like Virtual Ghost can be leveraged to mitigate 
OS-launched page table and LLC side-channel attacks  

• Apparition defends against page table and LLC side-channel attacks with low 
overhead (1% to 18%)

33


