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OS-Launched Side-Channel Attacks

• Applications assume OS is secure, 
however...

• OS can be compromised 
• Buffer overflows, information leak

• Shielding systems like Intel SGX can 
protect confidential application data from 
direct corruption

• A compromised OS can still launch side-
channel attacks
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OS-Launched Side-Channel Attacks
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• Exacerbate existing side channels
• Infer the victim’s behavior based on 

shared architectural states (caches, 
TLBs)

• Control system events to alleviate 
noise

• Introduce new side channels
• Trace page faults

• Monitor page table updates
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Why Shielding Systems Don’t Help

• Shielding systems are supposed to protect confidential application data from 
compromised OS, however…

• Page table is still managed by untrusted OS

• The OS and other untrusted applications still share architectural states with 
applications needing protection (Caches, TLB, etc.)
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We focus on defending against page table side-
channel and Last-level cache (LLC) side-channel 
attacks from the OS kernel
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Outline

• Examples of page table and cache side-channel attacks

• Background on Virtual Ghost

• Apparition

• Performance evaluation
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Page Table Side Channels

• Infer victim’s memory access behavior

• Tracing page faults
• Trigger page fault on every memory access

• Requires page table modification

• Can be used to recover entire secret document [1]

• Scanning ACCESS/DIRTY bit of page table entries
• Monitor first memory read/write

• First memory read/write sets ACCESS/DIRTY bit

• Requires page table reads
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[1] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side channels for 
untrusted operating systems. Oakland. 2015.



LLC Side Channel: Prime + Probe Attack 

• Attacker Infers the cache line 
accessed by the victim

• Prime: access

• Idle: while the victim accesses

• Probe: access      again
• If latency is longer, the victim has 

replaced       with 

• Flush + Reload has a similar 
rationale
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We Need to Prevent Compromised OS 
from Reading or Writing…
• Confidential application data

• Page tables containing translations for confidential application data

• Cache lines of confidential application data

We leverage a shielding system called Virtual Ghost that already  

• Prevents OS from reading and writing confidential application data

• Controls how OS configures page table
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Outline

• Examples of page table and cache side-channel attacks

• Background on Virtual Ghost

• Apparition

• Performance evaluation
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Background on Virtual Ghost

• A compiler-based virtual machine to protect 
application data from OS kernels

• Ports OS to virtual instruction set (V-ISA)

• Uses software fault isolation

• Forces OS kernel to invoke specific instructions to 
• Manipulate program state (e.g., context switch) 

• Configure hardware state (e.g., MMU)

• Does not mitigate side-channel attacks
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Protected Memory Regions

• OS cannot access protected memory 
regions
• Secure user space 

• Private to each application

• Virtual Ghost space 

• Only accessible to Virtual Ghost VM

• Used for saving internal data structures
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Apparition

• Virtual Ghost + page table and LLC side-channel defenses

• Control native code generation of the kernel
• Ensure the kernel is instrumented
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PAGE TABLE 
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Page Table Side-Channel Defenses 

• Direct map: a range of virtual 
memory mapping the entire physical 
memory as a single block

• Page table pages normally accessed 
via direct map

• Prevent OS from reading or writing 
the page table of the protected 
memory regions

• Remove the entry mapping the page 
table page from the kernel’s direct 
map
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Paging Side Channels Defenses
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• Lazy memory allocation
• OS maps the frame to the page when the 

application first reads or writes the page

• Side channel 
• Reveals paging behavior of the victim

• Defenses 
• Apparition VM manages secure user 

space memory allocation instead of OS

• Map physical frames upon allocation 
rather than at access time 

18
Virtual Address Space

malloc()



LLC 
SIDE-CHANNEL 

DEFENSES

19



Defenses against LLC Side Channels

• Partition LLC to isolate applications from OS

• Assign different cache partitions to OS, Apparition VM, and applications 
needing protection
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Intel Cache Allocation Technology

• Hardware feature that partitions LLC ways into subsets of smaller 
associativities

• Code can only evict cache lines in its partition, but can read any part of the 
LLC (no isolation on reads)

• Secure user space cache lines are not readable by OS
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Cache Partitioning Configuration
• Apparition VM 

• configures cache partitioning at boot time

• prevents the OS from reconfiguring the partitions via its virtual instruction set

• switches to the corresponding cache partition based on the code running 
(application, Apparition VM, and OS)
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Private Cache Partitions for Applications
• Each application needing protection has its own cache partition

• First assign one cache partition to the first application

• Then divide it when more applications are scheduled

• Hardware partitions are shared when they run out
• Flush the cache over context switch between two applications sharing partitions
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Spectre and Meltdown Attacks

• Apparition helps prevent information leak via LLC side channel
• Mitigates LLC side-channel attacks

• Our HASP paper [1] presents SFI that mitigates Spectre variant 1 and 
Meltdown 
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[1] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya Dwarkadas. 
Spectres, Virtual Ghosts, and Hardware Support. In HASP ‘18.



Outline

• Examples of page table and cache side-channel attacks
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• Apparition

• Performance evaluation
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Methodology

Experiment environment

• 3.4 GHz Intel i7-6700 
hyperthreading quad-core 
processor

• 16-way 8 MB LLC

• 16 GB RAM

• 256 GB SSD

• FreeBSD 9.0 ported to Apparition

Applications

• Tested CPU-intensive, network-intensive and 
file-system benchmarks

• A microbenchmark (that randomly accesses 
a large array)

• OpenSSH client

• Bzip2

• GnuPG

• Clang

• Highlight the results of a subset of 
applications evaluated

26



Methodology

• Bzip2:compress a 32 MB file

• Clang: compile gcc-smaller.c from SPEC 
CPU 2017

• GnuPG: cryptography program signing 
files of varying sizes

• All the applications put the heap in 
secure user space
• We modified malloc() in libc.so
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Page Table Side-Channel Defenses 
Overheads

• No additional overhead on Bzip2 
and Clang

• Disabling lazy memory allocation 
does not incur overhead

• Bzip2 and Clang access most of the 
heap allocated at runtime
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Page Table Side-Channel Defenses 
Overheads

File Size Apparition-
w/o-def 

Apparition-
PG-def

1 KB 9.5 ms 23.7 ms

2 KB 9.5 ms 23.8 ms

… x ms (x + 14) ms

16 MB 386.2 ms 400.1 ms

32 MB 761.8 ms 776.1 ms

• A constant overhead of 14 ms due to 
disabling lazy memory allocation 

• Additional cost of allocating and 
mapping 8 MB physical memory that 
is not accessed at runtime
• Due to alignment issue of the first 

invocation of malloc()

• Overhead negligible as file size 
increases
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LLC Side-Channel Defenses

• Simple approach: We statically partition the LLC into three parts 
• Our processor supports four cache partitions

• Experimentally determined cache partitioning that is close to the baseline 
performance
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LLC Side-Channel Defenses Overheads

• No additional overhead to Bzip2 
and Clang
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LLC Side-Channel Defenses Overheads
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• Switching among different LLC 
partitions incurs overhead

• Larger file size      more read/write 
syscalls larger cache partition 
switching overhead 

• For 8 MB to 32 MB files, the 
overhead is negligible (1.05x on 
average)

GnuPG signing files results.

File Size Apparition-
w/o-defenses

Apparition-
LLC-def

1 KB 9.5 ms 12.1 ms

2 KB 9.5 ms 12.1 ms

… … …

4 MB 103.9 ms 108.0 ms

8 MB 198.6 ms 203.6 ms

16 MB 386.2 ms 394.6 ms

32 MB 761.8 ms 776.6 ms



Conclusion

• Compromised OS is powerful enough to exacerbate existing side channels 
and introduce new side channels

• A compiler-based approach like Virtual Ghost can be leveraged to mitigate 
OS-launched page table and LLC side-channel attacks  

• Apparition defends against page table and LLC side-channel attacks with low 
overhead (1% to 18%)
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