
Inception: System-Wide Security Testing of Real-
World Embedded Systems Software
Nassim Corteggiani (Maxim Integrated / EURECOM)

Giovanni Camurati (EURECOM)
Aurélien Francillon (EURECOM)

08/15/18

Embedded Systems Are Everywhere

| Maxim Integrated | EURECOM2

[1]
https://community.arm.com/processors/b/bl
og/posts/arm-cortex-m3-processor-the-core-
of-the-iot

Embedded Systems Are Everywhere

Low Power
Micro-controllers

| Maxim Integrated | EURECOM3

[1]
https://community.arm.com/processors/b/bl
og/posts/arm-cortex-m3-processor-the-core-
of-the-iot

Embedded Systems Are Everywhere

Low Power
Micro-controllers

Over 32 billions of ARM
Cortex M3 shipped in 2018

[1]

[1]
https://community.arm.com/processors/b/bl
og/posts/arm-cortex-m3-processor-the-core-
of-the-iot

Cover a wide range of
fields

| Maxim Integrated | EURECOM4

Why the Security of Such Systems Matters?

| Maxim Integrated | EURECOM5

Why the Security of Such Systems Matters?

• Highly connected -> large scale attacks

| Maxim Integrated | EURECOM6

Why the Security of Such Systems Matters?

• Highly connected -> large scale attacks

• Difficulty to patch the code
> Mask ROM →mask applied on the chip during the fabrication
> Off-line devices

| Maxim Integrated | EURECOM7

Why the Security of Such Systems Matters?

• Highly connected -> large scale attacks

• Difficulty to patch the code
> Mask ROM →mask applied on the chip during the fabrication
> Off-line devices

• Store sensitive data
> Bitcoin wallet
> Payment terminal

| Maxim Integrated | EURECOM8

Why the Security of Such Systems Matters?

• Highly connected -> large scale attacks

• Difficulty to patch the code
> Mask ROM →mask applied on the chip during the fabrication
> Off-line devices

• Store sensitive data
> Bitcoin wallet
> Payment terminal

• Drive sensitive hardware system
> Physical damage
> Production line outage
> Signaling systems (red light)

| Maxim Integrated | EURECOM9

Exemple of Recent Security Issues
Recent attacks

| Maxim Integrated | EURECOM10

Exemple of Recent Security Issues
Recent attacks

• Nintendo Switch Tegra X1 bootrom exploit 2018
> buffer overflow in the USB stack embedded in the mask ROM

> Cannot be patched

> Give access to the entire software stack

| Maxim Integrated | EURECOM11

How Can We Test Such Firmware Programs?

• Symbolic Execution
> High path coverage

> Return test case for bugs

| Maxim Integrated | EURECOM12

Symbolic Execution Example
i = symb_i

Int buffer[2]

i = <input>

int buffer[2] = {0, 1};

| Maxim Integrated | EURECOM13

Symbolic Execution Example

¬(𝟎 ≤ 𝒊 < 𝟐)𝟎 ≤ 𝒊 < 𝟐

i = symb_i
Int buffer[2]

buffer[i]
TRUE FALSE

i = <input>

int buffer[2] = {0, 1};

if(buffer[i] == 0) {

Out of
bounds
access

| Maxim Integrated | EURECOM14

Symbolic Execution Example

¬(𝟎 ≤ 𝒊 < 𝟐)𝟎 ≤ 𝒊 < 𝟐

i = symb_i
Int buffer[2]

buffer[i]
TRUE FALSE

i = <input>

int buffer[2] = {0, 1};

if(buffer[i] == 0) {

buffer[i] = 0xDEADBEEF;

}

¬(𝒊 = 𝟎)
𝒊 = 𝟎

buffer[i] == 0xDEADBEAF

buffer[i] == 0
TRUE FALSE

| Maxim Integrated | EURECOM15

Out of
bounds
access

Building A Symbolic Executor For Firmware Programs
Klee as a basis

• Inception is based on Klee a symbolic virtual machine:

| Maxim Integrated | EURECOM16

Building A Symbolic Executor For Firmware Programs
Klee as a basis

• Inception is based on Klee a symbolic virtual machine:
> Widely deployed, efficient and based on the LLVM framework.

| Maxim Integrated | EURECOM17

Building A Symbolic Executor For Firmware Programs
Klee as a basis

• Inception is based on Klee a symbolic virtual machine:
> Widely deployed, efficient and based on the LLVM framework.

> Find memory safety violations

| Maxim Integrated | EURECOM18

Building A Symbolic Executor For Firmware Programs
Klee as a basis

• Inception is based on Klee a symbolic virtual machine:
> Widely deployed, efficient and based on the LLVM framework.

> Find memory safety violations

> High code coverage

| Maxim Integrated | EURECOM19

Building A Symbolic Executor For Firmware Programs
Klee as a basis

• Inception is based on Klee a symbolic virtual machine:
> Widely deployed, efficient and based on the LLVM framework.

> Find memory safety violations

> High code coverage

C/C++ source
code

| Maxim Integrated | EURECOM20

Building A Symbolic Executor For Firmware Programs
Klee as a basis

• Inception is based on Klee a symbolic virtual machine:
> Widely deployed, efficient and based on the LLVM framework.

> Find memory safety violations

> High code coverage

C/C++ source
code

Clang

| Maxim Integrated | EURECOM21

Building A Symbolic Executor For Firmware Programs
Klee as a basis

• Inception is based on Klee a symbolic virtual machine:
> Widely deployed, efficient and based on the LLVM framework.

> Find memory safety violations

> High code coverage

C/C++ source
code

Clang

LLVM bit-code

| Maxim Integrated | EURECOM22

Building A Symbolic Executor For Firmware Programs
Klee as a basis

• Inception is based on Klee a symbolic virtual machine:
> Widely deployed, efficient and based on the LLVM framework.

> Find memory safety violations

> High code coverage

C/C++ source
code

Clang

LLVM bit-code

Klee

| Maxim Integrated | EURECOM23

Why testing source code instead of binary code ?
Source VS Binary

| Maxim Integrated | EURECOM24

Why testing source code instead of binary code ?
Source VS Binary

char b1[2];

char b2[2];

char getElement(int index)

{

return b1[index];

}

b1: .space 2

b2: .space 2

getElement(int):

ldr r2, .L3

add r3, r2, r0

ldrb r0, [r3]

bx lr

.L3: .word b1

| Maxim Integrated | EURECOM25

Why testing source code instead of binary code ?
Source VS Binary

char b1[2];

char b2[2];

char getElement(int index)

{

return b1[index];

}

b1: .space 2

b2: .space 2

getElement(int):

ldr r2, .L3

add r3, r2, r0

ldrb r0, [r3]

bx lr

.L3: .word b1

| Maxim Integrated | EURECOM26

Why testing source code instead of binary code ?
Source (Klee/Clang…) VS Binary (SE2, angr, BAP)

define i8 @getElement(i32 %index){

entry:

%0 = load i32* %index.addr

%1 = getelementptr inbounds

[2 x i8]* @b1, i32 0, i32 %0

%2 = load i8* %1

ret i8 %2

}

char b1[2];

char b2[2];

char getElement(int index)

{

return b1[index];

}

b1: .space 2

b2: .space 2

getElement(int):

ldr r2, .L3

add r3, r2, r0

ldrb r0, [r3]

bx lr

.L3: .word b1

define i8 @getElement(i32 index) {

entry:

store i32 %index, i32* @R0

store i32 268436792, i32* @R2

%R2_1 = load i32* @R2

%R0_1 = load i32* @R0

%R2_2 = add i32 %R2_1, %R0_1

%R3_0 = inttoptr i32 %R2_2 to i32*

%R3_1 = bitcast i32* %R3_0 to i8*

%R3_2 = load i8* %R3_1

%R3_3 = zext i8 %R3_2 to i32

| Maxim Integrated | EURECOM27

Why testing source code instead of binary code ?
Source (Klee/Clang…) VS Binary (SE2, angr, BAP)

define i8 @getElement(i32 %index){

entry:

%0 = load i32* %index.addr

%1 = getelementptr inbounds

[2 x i8]* @b1, i32 0, i32 %0

%2 = load i8* %1

ret i8 %2

}

char b1[2];

char b2[2];

char getElement(int index)

{

return b1[index];

}

b1: .space 2

b2: .space 2

getElement(int):

ldr r2, .L3

add r3, r2, r0

ldrb r0, [r3]

bx lr

.L3: .word b1

define i8 @getElement(i32 index) {

entry:

store i32 %index, i32* @R0

store i32 268436792, i32* @R2

%R2_1 = load i32* @R2

%R0_1 = load i32* @R0

%R2_2 = add i32 %R2_1, %R0_1

%R3_0 = inttoptr i32 %R2_2 to i32*

%R3_1 = bitcast i32* %R3_0 to i8*

%R3_2 = load i8* %R3_1

%R3_3 = zext i8 %R3_2 to i32

| Maxim Integrated | EURECOM28

Source vs Binary

• When source available testing binary is possible however:
> Types are lost

> Corruption will be detected later if at all

> Worse on embedded systems

• See: Muench et. al. What you corrupt is not what you crash, NDSS 2018

• Goal of Inception: improve testing for firmware during development
> Limit requirements on code

| Maxim Integrated | EURECOM29

Major Challenges For Symbolic Execution of Firmware Programs
Is C/C++ Support Enough To Test Real World Firmware ?

• Number of functions including assembly instructions
in real world embedded software

22

98 108 80

1

10

100

1000

STM32(demos) FreeRTOS(STM32) Mbed OS ChibiOS

Functions2

| Maxim Integrated | EURECOM30

Major Challenges For Symbolic Execution of Firmware Programs
Is C/C++ Support Enough To Test Real World Firmware ?

• Number of functions including assembly instructions
in real world embedded software

22

98 108 80

1

10

100

1000

STM32(demos) FreeRTOS(STM32) Mbed OS ChibiOS

Functions2

• Assembly code :
> Multithreading

> Optimizations

> Side channel counter-measures

> Hardware features e.g. ultra low power
mode

| Maxim Integrated | EURECOM31

Major Challenges For Symbolic Execution of Firmware Programs
Is C/C++ Support Enough To Test Real World Firmware ?

• Presence of assembly instructions in real
world embedded software

0

500

1000

1500

2000

2500

3000

STM32(demos) FreeRTOS(STM32) Mbed OS ChibiOS

Functions with inline asm Functions2

• Assembly code :
> Multithreading

> Optimizations

> Side channel counter-measures

> Hardware features e.g. ultra low power
modeChallenge 1 :

Firmware source code contains a mix of C/C++, assembly and binary

| Maxim Integrated | EURECOM32

Major Challenges For Symbolic Execution of Firmware Programs
Hardware environment

| Maxim Integrated | EURECOM33

Major Challenges For Symbolic Execution of Firmware Programs
Hardware environment

• Hardware interactions
> Memory Mapped I/O

| Maxim Integrated | EURECOM34

Major Challenges For Symbolic Execution of Firmware Programs
Hardware environment

• Hardware interactions
> Memory Mapped I/O

• Memory

• Peripherals

#define UART_STATUS 0x40000000

#define UART_DATA 0x40000004

char* RX_BUFFER = 0x20000000;

while(!*UART_STATUS) {

char* data = (char*)UART_DATA;

strncpy(RX_BUFFER++, data, 4);

}

Internal/external
memory

Internal/external
peripherals

| Maxim Integrated | EURECOM35

Major Challenges For Symbolic Execution of Firmware Programs
Hardware environment

• Hardware interactions
> Memory Mapped I/O

• Memory

• Peripherals

> Interrupt driven programs

#define UART_STATUS 0x40000000

#define UART_DATA 0x40000004

char* RX_BUFFER = 0x20000000;

while(!*UART_STATUS) {

char* data = (char*)UART_DATA;

strncpy(RX_BUFFER++, data, 4);

}

Internal/external
memory

Internal/external
peripherals

Interrupt
Controller

void interrupt_handler() { }

| Maxim Integrated | EURECOM36

Major Challenges For Symbolic Execution of Firmware Programs
Hardware environment

• Hardware interactions
> Memory Mapped I/O

• Memory

• Peripherals

> Interrupt driven programs

#define UART_STATUS 0x40000000

#define UART_DATA 0x40000004

char* RX_BUFFER = 0x20000000;

while(!*UART_STATUS) {

char* data = (char*)UART_DATA;

strncpy(RX_BUFFER++, data, 4);

}

Internal/external
memory

Internal/external
peripherals

Interrupt
Controller

void interrupt_handler() { }

Challenge 2 :

Firmware programs highly interact with their hardware environment

| Maxim Integrated | EURECOM37

Building A Symbolic Executor For Firmware Programs

| Maxim Integrated | EURECOM38

Building A Symbolic Executor For Firmware Programs

Firmware
(C/C++, asm,

binary)
Clang LLVM bit-code

| Maxim Integrated | EURECOM39

Building A Symbolic Executor For Firmware Programs

Firmware
(C/C++, asm,

binary)
Clang LLVM bit-code ELFARM

Backend

| Maxim Integrated | EURECOM40

Building A Symbolic Executor For Firmware Programs

Firmware
(C/C++, asm,

binary)
Clang LLVM bit-code ELF

Inception
Translator

LLVM bit-code
Mixed IR

ARM
Backend

• Inception translator:
> Lift assembly directives and binary code in

LLVM bit-code

> Merge lifted bit-code with other
• High-IR : obtained from C/C++

• Glue-IR : glue code

• Low-IR : lifted assembly/binary

| Maxim Integrated | EURECOM41

Building A Symbolic Executor For Firmware Programs

Firmware
(C/C++, asm,

binary)
Clang LLVM bit-code

Modified
Klee

ELF

Inception
Translator

LLVM bit-code
Mixed IR

ARM
Backend

| Maxim Integrated | EURECOM42

• Inception translator:
> Lift assembly directives and binary code in

LLVM bit-code

> Merge lifted bit-code with other
• High-IR : obtained from C/C++

• Glue-IR : glue code

• Low-IR : lifted assembly/binary

> Support Cortex M3 ISA

Challenge 1 : Supporting C/C++/Asm/Binary code
Inception-translator

| Maxim Integrated | EURECOM52

Inception Translator : Merging High-IR and Low-IR

| Maxim Integrated | EURECOM53

int a = 4;

boo(a);

<boo>:

1000045C: 80 B4 push {r7}

1000045E: 83 B0 sub sp, #0xc

Inception Translator : Merging High-IR and Low-IR

High IR

%a = alloca i32

store i32 4, i32* %a

%0 = load i32* %a

%call = call i32

@boo(i32 %0)

ret void }

| Maxim Integrated | EURECOM54

int a = 4;

boo(a);

<boo>:

1000045C: 80 B4 push {r7}

1000045E: 83 B0 sub sp, #0xc

Inception Translator : Merging High-IR and Low-IR

Low IRHigh IR

int a = 4;

boo(a);

%a = alloca i32

store i32 4, i32* %a

%0 = load i32* %a

%call = call i32

@boo(i32 %0)

ret void }

<boo>:

1000045C: 80 B4 push {r7}

1000045E: 83 B0 sub sp, #0xc

"boo+0": ; preds = %entry

%R7_1 = load i32* @R7

%SP1 = load i32* @SP

%SP2 = sub i32 %SP1, 4

%SP3 = inttoptr i32 %SP2 to i32*

store i32 %R7_1, i32* %SP3

store i32 %SP2, i32* @SP

%SP4 = load i32* @SP

%SP5 = add i32 %SP4, -13

%SP6 = add i32 %SP5, 1

| Maxim Integrated | EURECOM55

Inception Translator : Merging High-IR and Low-IR

Glue IR Low IRHigh IR

int a = 4;

boo(a);

define i32 @boo(i32 %a){

entry:

store i32 %a, i32* @R0

br label %"boo+0"

%a = alloca i32

store i32 4, i32* %a

%0 = load i32* %a

%call = call i32

@boo(i32 %0)

ret void }

<boo>:

1000045C: 80 B4 push {r7}

1000045E: 83 B0 sub sp, #0xc

"boo+0": ; preds = %entry

%R7_1 = load i32* @R7

%SP1 = load i32* @SP

%SP2 = sub i32 %SP1, 4

%SP3 = inttoptr i32 %SP2 to i32*

store i32 %R7_1, i32* %SP3

store i32 %SP2, i32* @SP

%SP4 = load i32* @SP

%SP5 = add i32 %SP4, -13

%SP6 = add i32 %SP5, 1

| Maxim Integrated | EURECOM56

Unified Memory Layout

| Maxim Integrated | EURECOM57

Unified Memory Layout

Glue IR :
lower

the level of
semantic

Low IRHigh IR

Glue IR :
higher

the level of
semantic

High IR

Execution path
| Maxim Integrated | EURECOM58

Unified Memory Layout

• Allocate Low IR memory : stack, virtual CPU registers, heap

Glue IR :
lower

the level of
semantic

Low IRHigh IR

Glue IR :
higher

the level of
semantic

High IR

Execution path
| Maxim Integrated | EURECOM59

Unified Memory Layout

• Allocate Low IR memory : stack, virtual CPU registers, heap

• Fill gaps in global data sections
• When no C/C++ symbols point to this area

Glue IR :
lower

the level of
semantic

Low IRHigh IR

Glue IR :
higher

the level of
semantic

High IR

Execution path
| Maxim Integrated | EURECOM60

Unified Memory Layout

• Allocate Low IR memory : stack, virtual CPU registers, heap

• Fill gaps in global data sections
• When no C/C++ symbols point to this area

• Allocate High-IR objects at location defined in the ELF symbols table

Glue IR :
lower

the level of
semantic

Low IRHigh IR

Glue IR :
higher

the level of
semantic

High IR

Execution path
| Maxim Integrated | EURECOM61

Low IR Hardware Mechanisms Emulation

• Challenge we solved:
> Indirect calls (Indirect Call Promotion)

> Seamless hardware mechanisms (Context switching)

> Supervisor call

> Update specific registers values (LR, MSP, PSP, BASEPRI, ITSTATE, …)

Glue IR :
lower

the level of
semantic

Low IRHigh IR

Glue IR :
higher

the level of
semantic

High IR

Execution path

Emulation

| Maxim Integrated | EURECOM62

Challenge 2 : Hardware interactions
Inception-analyzer

| Maxim Integrated | EURECOM63

The Inception System Overview

Mixed
Bytecode

config.json

Klee-based
Symbolic Virtual Machine

ELF

| Maxim Integrated | EURECOM64

The Inception System Overview

Mixed
Bytecode

config.json

Klee-based
Symbolic Virtual

Machine

Memory
Mapped

stack

Globals

heap

Data are allocated according to
the information present in the symbol table

User configuration (config.json):
- Local memory
- Redirected memory
- Symbolic memory

ELF

| Maxim Integrated | EURECOM65

The Inception System Overview: Inception debugger

Mixed
Bytecode

config.json

Klee-based
Symbolic Virtual

Machine

Memory
Mapped

stack

Globals

heap

ELF
Real Device

Custom
Inception Debugger

USB 3.0 link

Jtag

| Maxim Integrated | EURECOM66

The Inception System Overview: Inception debugger

• Inspired by Surrogates and Avatar

| Maxim Integrated | EURECOM67

Memory
Mapped

stack

Globals

heap

Real Device

Custom
Inception Debugger

USB 3.0 link

Jtag

Zaddach et. al. AVATAR: A Framework to Support Dynamic
Security Analysis of Embedded Systems' Firmwares, NDSS
2014
Koscher et. al. SURROGATES: Enabling Near-Real-Time
Dynamic Analyses of Embedded Systems, WOOT 2015

The Inception System Overview: Inception debugger

Mixed
Bytecode

config.json

Klee-based
Symbolic Virtual

Machine

Memory
Mapped

stack

Globals

heap

ELF
Real Device

Custom
Inception Debugger

USB 3.0 link

Interrupt
Controller

Jtag

| Maxim Integrated | EURECOM68

Evaluation

| Maxim Integrated | EURECOM69

Performance

Average time to complete 1 × 106 read or write requests
for SURROGATES and Inception.

Performance comparison between native execution
and Inception.

* Current bottleneck is bit-code execution

0

10000

20000

30000

40000

50000

60000

70000

80000

Reads Writes Buffered Reads

Inception Surrogates

0,1

1

10

100

1000

10000

Wget Ping UART

Inception Native

| Maxim Integrated | EURECOM70

Average IO per second Average runtime [ms]

Bug Detection

Evolution of corruption detection vs. number of assembly
functions in the EXPACT XML parser (4 vulnerabilities [1],
symbolic inputs, and a timeout of 90s).

Corruption detection of real-world security flaws
based on FreeRTOS and the Juliet 1.3 test suites.

0

1

2

3

4

0 1 2 3 4 5

Detected Undetected

0%

20%

40%

60%

80%

100%

Division by
Zero

Null Pointer
Dereference

Use After
Free

Free
Memory Not

on Heap

Heap-Based
Buffer

Overflow

Integer
Overflow

Detected Undetected

[1] MUENCH et. al. What you corrupt is not what you crash: Challenges in fuzzing embedded devices. In NDSS 2018.

| Maxim Integrated | EURECOM71

% of detected bugsAverage number of detected vuln.

Verification

• Intensive verification of the lifter and the modified Klee
> 53K tests comparison between Inception and native

> 1562 tests based on NIST Juliet 1.3 tests suite

> 40 tests based on the Klockwork tests suite

> Several demos for the STM32 L152RE and the LPC1850 DB1 boards

> 1 Mbed TLS test suite

> Several embedded operating systems (FreeRTOS, mini-arm-os)

| Maxim Integrated | EURECOM72

Conlusion

• Extends analysis to mixed languages: assembly, C/C++, binary

• Fit well in chip life-cycle :
> test without hardware
> FPGA-based design
> silicium

• Already used on proprietary real world Mask ROM code at Maxim
> Bugs found before mask manufacturing

• Inception is open-sourced:
> Getting started at

https://inception-framework.github.io/inception/
> Github and docker

| Maxim Integrated | EURECOM73

https://inception-framework.github.io/inception/

Questions?

| Maxim Integrated | EURECOM74

Free icons license : https://icons8.com

