
Modelling and Analysis of a Hierarchy of
Distance Bounding Attacks

Tom Chothia, Joeri de Ruiter and Ben Smyth

Introduction

• A unified framework for distance bounding attacks.

• Examples: Contactless EMV & NXP’s DB protocol.

• A modelling language for DB protocols.

• A hierarchy of security properties, matched to particular attacker models.

• Automatically checking previously defined symbolic properties.

Core EMV Protocol
Shop Card

UN, amount, currency, . . .

MACKs(amount,currency,UN,..)
SignKcard (amount,currency,UN,Nc..)

Generate nonce: Nc
Session key based on ATC: Ks=EncKbank(ATC)

Kbank: 3-DES key shared with bank
Kcard: an RSA public
Kcert : Bank cert. for KcardBank’s

Verification key

Kcert, ATC

AC, ATC

Master-
card’s
PayPass

Shop Phone1 Phone2 Card
SELECT

AIDs

GPO

ATC,AC, SDAD, PAN

READ1

Static data

SELECT AID

AIDs

READ2

SSAD,Nc

READ2

SSAD,Nc

SELECT

AIDs

UN, amount GPO

ATC,AC,SDAD,PAN
AC, SDAD

Nc

Only
added
time
delay

Uses New Command

MasterCard’s Relay
Resistance Protocol (RRP)
(similar to PaySafe)

Timing profile sent by card

We check this as
auth. property

NXP distance bounding protocol

• NXP sell a distance bounding smart card.

• NXP have patented a distance bounding J

• Patent documents are really hard to read L

“This need may be met by the subject matter according to the
independent claims. Advantageous embodiments of the present

invention are set forth in the dependent claims.”

NXP Protocol.

Can be split
into 8 one bytes

message

Only in one
version

Some Questions

• How can we formally (symbolically) define these protocols?

• How can we say if these protocols are “secure”?

• What does “secure” even mean in this context?

Our modelling language for DB

in (x).P
out <x>.P
P | Q
!P
new a.P
let x = D in P else Q
event(X).P
startTimer.P
stopTimer.P

Locations: L = [P] or L | L
Eg.
[EMVCard] | [ShopReader]
[EMVCard | ShopReader]

PaySafe Model
let Verifier =
out c<SELECT,AID>.
in c(pdol).
new UN.
out c<GET_PROCESSING_OPTIONS,UN,amount>.
in c(aip,afl,NC).
out c<GENERATE_AC>.
in c(SDAD,AC).
out c<READ_RECORD>.
in c(cCert).
let cKey, cId = checksign(cCert,getPubKey(BANK_ID)) in
let (=UN,=NC,=rAmount,ATC,AC)=checksign(SDAD,cKey) in
event Verified(cId).

PaySafe Model
let Verifier =
out c<SELECT,AID>.
in c(pdol).
new UN.
out c<GET_PROCESSING_OPTIONS,UN,amount>.
in c(aip,afl,NC).
startTimer. out c<GENERATE_AC>.
in c(SDAD,AC). stopTimer.
out c<READ_RECORD>.
in c(cCert).
let cKey, cId = checksign(cCert,getPubKey(BANK_ID)) in
let (=UN,=NC,=rAmount,ATC,AC)=checksign(SDAD,cKey) in
event Verified(cId).

[Verifiers] | [Provers]

[Verifiers | Provers]

Verifiers = !(new amount.!Verifier)
Provers = !(new id. let idP = id in

let cCert = sign(getPubKey(idP), idP),
getPrivKey(BANK_ID)) in

!event Start(idP). Prover]

Unbounded number ids each for an unbounded
number of runs

challenge

response

startTimer

stopTimer

challenge

response

startTimer

stopTimer

StartTimer blocks
an messages from
remote locations

stopTimer re-enables
messages from remote

locations

(b) (c)

We write [Process]<number of timers running>

[in c(x).P | out c<n>.Q]r -> [P{n/x} | Q]r

[out c<n>.Q]r | [P]0 -> [Q]r | [out c<n>|P]0

[out c<n>.Q]r -> [out c<n> | Q]r

Key observation: The semantics just needs to block outputs
from remote locations while a timer is running

Definitions for the symbolic literature

Relay/Mafia Fraud: attackers relay and interfere
with messages

Images from freepik

Distance Fraud: remote dishonest prover tricks
the verifier

Distance Hijacking: remote dishonest prover
uses a local honest prover

Images from freepik

Terrorist Fraud: A remote dishonest prover*
and local attacker

Assisted Distance Fraud: remote dishonest
prover* and local dishonest prover

Definitions for the symbolic literature

• Relay/Mafia Fraud: attackers relay and interfere with messages

• Lone Distance Fraud: remote dishonest prover tricks the verifier

• Distance Hijacking: remote dishonest prover uses a local honest prover

• Terrorist Fraud: A remote dishonest prover* and local attacker

• Assisted Distance Fraud: remote dishonest prover* and local dishonest
prover

[V | A] | [A | P(id)]
Location 2Location 1

AttackerAttackerPOS Card

Relay Attack

• There exists relay attack against the protocol P and V if there exists A
such that

[V(id)|A] | [P(id)|A]

I.e.
[V | A] | [P(id) | A]
->* [X] | [new id.Q | Y]
-> [X] | [Q{a/id} | Y]

[event verified(a).R | W] | [Z]

Distance Fraud

• Dishonest prover DP-A(id) = !new id.<board cast all secret values> | A

• Lone Distance Fraud: A dishonest prover remotely authenticates to a

verifier.

[V(id)] | [DP-A(id)]

• Distance Hijacking: remote dishonest prover uses a local honest

prover

[V(id)|P(id’)] | [DP-A(id)]

E.g.: For RRP:

DP-A(id) = A | ! new id. out c<id>!

let cert = sign((getPubKey(id), id), getPrivKey(BANK_ID)) in

out c<getPrivKey(id), cert, sharedKey(id))).

• Terrorist Fraud, TP-A(id): = A | oracle for all functions and values

• Terrorist Fraud: A remote terrorist prover and local attacker
[V(id) | A] | [TP-A(id)]

• Assisted Terrorist Fraud: remote terrorist prover and local attacker and honest prover
[V(id) | P(id’) | A] | [TP-A(id)]

• Assisted Distance Fraud: remote terrorist prover and local dishonest prover

[V(id)|DP-A(id’)] |[TP-A(id)]

Terrorist Frauds
E.g.: For RRP:
TP-A(id) = A | ! new id. out c<id>. (

! in c (atc, message);
let macKey=genKey(atc, sharedKey(idP)) in
let messageMAC = mac(message, macKey) in
out c<messageMAC>

| ! in c(message);
let signed=sign(message,getPrivKey(id)) in
out c<signed)>

| out c<cardCert, id>.

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id’)] | [DP-A(id)]

Assisted Distance Fraud
[V(id)|DP-A(id’)] |[TP-A(id)]

Our Building Blocks

• Arbitrary number
of provers

• Verifier looking
for one of “id”

• A Dolev–Yao
attacker

• Other Provers

P(id)

V(id)

• A dishonest prover

• A terrorist prover

• A dishonest prover

• A terrorist prover

A

P(id’)

Trying to trick verifier

Verifier doesn’t care about

DP-A(id)

TP-A(id)

DP-A(id’)

TP-A(id’)

Ordering the Properties
• Our building blocks form a

hierarchy.

• Each level is strictly more expressive
than the one below.

• Replacing any process with the one
above it, at a particular location,
makes the attacker more powerful.

0

P(id) A

P(id)|A

TF-A(id)

DF-A(id)

[V(id)|A] | [P(id)|A]

[V(id)|A] | [P(id)|A|P(id’)]
=

Equalities between processes

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id’)] | [DP-A(id)]

[V(id)|A] | [TP-A(id’)|P(id)]

Assisted Distance Fraud
[V(id)|DP-A(id’)] |[TP-A(id)]

[V(id)|P(id’)|A] | [TP-A(id)]

[V(id)|TP-A(id’)] | [TP-A(id)]

Distance Fraud
[V(id)] | [DP-A(id)]

[V(id)|TP-A(id’)] | [P(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

[V(id)] | [P(id)|A]

[V(id)|P(id’)] | [P(id)|A]

[V(id)|P(id’)] | [P(id) | TP-A(id’)]
[V(id)|A|P(id’)] | [P(id)]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

[V(id)|P(id’)|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id’)] | [DP-A(id)]

V(id)] | [TP-A(id)]

[V(id) | TP-A(id’)] | [TP-A(id)]

[V(id)|DP-A(id’)] | [P(id)]

Assisted Distance Fraud
[V(id)|DP-A(id’)] | [TP-A(id)]

[V(id)|A] | [P(id)]

[V(id)|TP-A(id’)] | [P(id)|A]

[V(id)|P(id’)|A] | [P(id)|A]

[V(id)|DP-A(id’)] | [P(id)|A]

[V(id)] | [P(id) | DP-A(id')]

[V(id)] | [P(id)|TP-A(id')]

[V(id)] | [TP-A(id)|DP-A(id')]
[V(id)|A] | [TP-A(id’)|P(id)]

[V(id)|P(id’)] | [TP-A(id)|DP-A(id’)]

[V(id)|P(id’)] | [TP-A(id)]
[V(id)|P(id’)] | [P(id) | DP-A(id’)]

[V(id)|TP-A(id’)] | [P(id)|TP-A(id’)]

[V(id) | DP-A(id’)] | [P(id) | TP-A(id’)]

[V(id)|A|P(id’)] | [P(id)|TP-A(id’)]

[V(id)] | [DP-A(id)]

[V(id)] | [TP-A(id)]

=

Some Heuristics

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

[V(id)] | [P(id)|A]

[V(id)|P(id’)] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

[V(id)|P(id')|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id')] | [DP-A(id)]

Assisted Distance Fraud
[V(id)|DP-A(id')] | [TP-A(id)]

Uncompromised Distance Bounding
[V(id)|DP-A(id')] | [P(id)|DP-A(id’)]

Relay Hijacking
[V(id)|P(id')|A] | [P(id)|A]

[V(id)] | [P(id)|DP-A(id')]

[V(id)|A] | [P(id)|TP-A(id')] [V(id)|P(id')] | [P(id)|DP-A(id')]

[V(id)|P(id')|A] | [P(id)|DTP(id')]

Key:
P(id): honest provers with identity “id”
V(id): verifier wishing to verifier “id”
A: attacker process
TP-A(id): terrorist provers, acting as “id”
DP-A(id): dishonest provers, acting as “id”

Relay Hijacking

Uncompromised Distance Bounding

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

[V(id)] | [P(id)|A]

[V(id)|P(id’)] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

[V(id)|P(id')|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id')] | [DP-A(id)]

Assisted Distance Fraud
[V(id)|DP-A(id')] | [TP-A(id)]

Uncompromised Distance Bounding
[V(id)|DP-A(id')] | [P(id)|DP-A(id’)]

Relay Hijacking
[V(id)|P(id')|A] | [P(id)|A]

[V(id)] | [P(id)|DP-A(id')]

[V(id)|A] | [P(id)|TP-A(id')] [V(id)|P(id')] | [P(id)|DP-A(id')]

[V(id)|P(id')|A] | [P(id)|DTP(id')]

Key:
P(id): honest provers with identity “id”
V(id): verifier wishing to verifier “id”
A: attacker process
TP-A(id): terrorist provers, acting as “id”
DP-A(id): dishonest provers, acting as “id”

Terrorist attackerNo terrorist attacker

Remote attacker only

Remote and local attackers

Trusted devices only

Some untrusted devices

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

[V(id)] | [P(id)|A]

[V(id)|P(id’)] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

[V(id)|P(id')|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id')] | [DP-A(id)]

Assisted Distance Fraud
[V(id)|DP-A(id')] | [TP-A(id)]

Remote attacker only
Uncompromised Distance Bounding
[V(id)|DP-A(id')] | [P(id)|DP-A(id’)]

Relay Hijacking
[V(id)|P(id')|A] | [P(id)|A]

Trusted devices only

Some untrusted devices

Terrorist attacker

[V(id)] | [P(id)|DP-A(id')]

[V(id)|A] | [P(id)|TP-A(id')] [V(id)|P(id')] | [P(id)|DP-A(id')]

[V(id)|P(id')|A] | [P(id)|DTP(id')]

No terrorist attacker

Remote and local attackers

Key:
P(id): honest provers with identity “id”
V(id): verifier wishing to verifier “id”
A: attacker process
TP-A(id): terrorist provers, acting as “id”
DP-A(id): dishonest provers, acting as “id”

Prover being checked
is compromised

Prover being checked
is not compromised

Automatically Checking

• We translate our DB calculus into the applied pi-calculus, and use ProVerif to check
processes automatically.

• The translation uses 3 phases:
• Phase 1, before the timer start
• Phase 2, while the timer is running
• Phase 3, after the time stops.

startTimer jumps from phase 1 to phase 2.
stopTimer jumpes from phase 2 to phase 3.

Process at the same location as the verifier can act in all phases
Process at a different location can only act in Phase 1 and Phase 2.

Demo

Conclusion

• A unified framework for distance bounding attacks.

• Examples: Contactless EMV & NXP’s DB protocol.

• A modelling language for DB protocols.

• A hierarchy of security properties, matched to particular attacker models.

• Automatically checking previously defined symbolic properties.

