
We Still Don’t Have Secure Cross-Domain Requests:
an Empirical Study of CORS

Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan,
Shuo Chen, Vern Paxson, Min Yang

Tsinghua University, Shape Security, Huawei Canada,
Microsoft Research, UC Berkeley, Fudan University

1

https://www.jianjunchen.com/

Same Origin Policy (SOP)

• Isolate resources from different origins

• Cross origin network access: Can send, Can’t Read

2

Browser

Web server
(a.com)

Web server
(b.com)

GET http
://b

.com
Security Isolation

a.com b.com

HTTP response

Developers need cross origin reading

• JSON with Padding (JSON-P)
• A workaround to server the need
• introduces many inherent security issues

•Cross Origin Resource Sharing (CORS)
• A more disciplined mechanism
• Browsers support(2009), W3C standard(2014)

Our work

• Conducted an empirical study on CORS
• Including its design, implementation and deployment

• Discovered a number of security issues
• 4 categories of browser-side issues
• 7 categories of sever-side issues

• Conducted a large-scale measurement on popular websites
• 27.5% of CORS configured websites have insecure CORS configuration

• Proposed mitigations and some of them have been adopted by
web standard and major browsers.

Contents

•Web SOP and CORS background

•Our discovery: CORS security issues
• Browser-side: overly permissive sending
• Server-side: CORS misconfigurations

• CORS real-world deployments
• Our large scale measurement

• Disclosure and Mitigation

Web & CORS background

6

7

The default SOP prevents cross origin reading

a.com
Server Browser b.com

Server
Load JS

GET http://b.com

200 OK HTTP response

Developers need cross origin reading!

Same Origin Policy

Online Shopping Website Shipping Website

8

Cross origin resource sharing (CORS)

a.com
Server Browser b.com

Server
Load JS

GET request
Origin: http://a.com

HTTP response with CORS policy
Access-Control-Allow-Origin:http://a.com

Browser enforce policy

• Explicit authorization access control mechanism
• Browsers support(2009), W3C standard(2014)

• CORS allows JS to customize method, header and body

CORS JavaScript interfaces (e.g. XHR)

var xhr=new XMLHttpRequest();
xhr.open(“PATCH“, ”http://b.com/r“, true);
xhr.setRequestHeader(“X-Requested-With“, “XMLHttpRequest ");
xhr.withCredentials = true;

xhr.send(“any data”);

But this interface is very powerful, and may break CSRF
defense of many websites.

Document of a.com

10

Simple requests in CORS standard

• Two categories of requests
• Simple request: can be sent directly
• Non-simple request: not to cover this in this talk (refer to the paper)

• A simple request must satisfy all of the three conditions�
1. Request method is HEAD, GET or POST.
2. Request headers are not customized, except for 9 whitelisted headers: Accept,

Accept-Language, Content-Language, Content-Type, etc.
3. Content-Type header value is one of three specific values: “text/plain”,

“multipart/form-data”, and “application/x-form-uri-encoded”.

Browser-side Issues: Overly Permissive Sending
Permissions

(4 categories of issues)

• CORS relax send restrictions unintentionally, allowing malicious
customization of HTTP headers and bodies
• The relaxation can be exploited by attackers

Problems Attacks
P1. Overly permissive header values RCE attack on intranet servers
P2. Few limitations on header size Infer cookie presence for ANY website
P3. Overly flexible body values Attack MacOS AFP server
P4. Few limitations on body format Exploit previously unexploitable CSRF

Overly permissive request headers and bodies

P1. Overly permissive header values

• CORS allows JavaScript to modify 9 whitelisted headers.
• CORS imposes few limitations on header values except “Content-Type”
• eg. (, {, \x01,\x0b

GET /api HTTP/1.1
Host: 192.168.1.1
Accept: (){:;}; /bin/rm –rf /

Victim
Attacker’s website

Intranet website(Shellshock vul)

Affected browser(4/5):

P1. Overly permissive header values

• CORS restricts “Content-Type” to three specific values
• But the restriction can be bypassed due to browsers’ implementation flaws.

GET /api HTTP/1.1
Host: 192.168.1.1
Content-Type: text/plain ; %{(apache struts exploit)}

Victim
Attacker’s website

Intranet website(Apache structs vul)

Affected browsers(5/5):

Case study: obtain a shell on Intranet server
by exploiting browsers

InternetIntranet

NAT/
Gateway AttackerDatabase

File ServerWebsite

Users

Demo: Obtain a shell on Intranet server by exploiting
browsers(https://youtu.be/jO6hoXyXVqk)
Victim’s browser in Intranet Attacker in Internet

P2. Few limitations on header size

• Both HTTP and CORS standards have no explicit limit on request
header sizes.
• Browsers’ header size limitation are more relaxed than servers.

• Case study 2: Remotely infer cookie presence for ANY website.

Remotely infer cookie presence for ANY
website
Step 1: Measure the header size limit of target server

Health.com
(Max header size limitation: S)

Issue HTTP request with head size 1

200 OK HTTP response

Attacker

Victim

Remotely infer cookie presence for ANY
website
Step 1: Measure the header size limit of target server

Health.com
(Max header size limitation: S)

Issue HTTP request with head size S+1

400 Bad Request HTTP response

Attacker

Victim

Remotely infer cookie presence for ANY
website

Step 2: Send request from the victim’s browser with header

size slightly smaller than the measured limit.

Request with
head size S-1

Victim visits the attacker‘s website

400 Bad request

Victim

Attacker

Health.com

(Max header size

limitation: S)

When Cookie is present, “400 Bad request” is returned

Remotely infer cookie presence for ANY
website

Step 2: Send request from the victim’s browser with header
size slightly smaller than the measured limit.

Request with head size S-1

Victim visits the attacker‘s website

200 OK HTTP Reply Health.com
(Max header size

limitation: S)

Victim

Attacker

When Cookie is not present, “200 OK” is returned

Remotely infer cookie presence for ANY
website

Step 3: Infer the response status through timing channel.

Request with head size S-1

Victim visits the attacker‘s website

400 Bad request

Victim

Attacker

Health.com
(Max header size

limitation: S)

• One general timing channel is response time.
• In Chrome, Performance.getEntries() directly exposes it.

Remotely infer cookie presence for ANY
website
• The presence of a cookie can leak private information.
• victim’s health conditions
• Financial considerations
• Political preferences

Affected browsers(5/5):

P3. Overly flexible body values

• CORS impose no limitations on the values of request body
• CORS allows JavaScript to construct ANY binary data in request body

Public attacker site Victim
1. visit attacker site 2. send cross site request

POST / HTTP/1.1
Host: 192.168.1.1

01010101011111

MacOS AFP server

3. ignore unknow headers,
perform AFP cmds

Affected browsers(5/5):

Demo: exploiting MacOS built-in Apple file server
to create local files(https://youtu.be/WXIy94prfvs)

Server-side issues: CORS misconfigurations
(7 categories of issues)

Inspired by these previous work:
[1] James Kettle, “Exploiting CORS misconfigurations for Bitcoins and bounties”, AppSecUSA 2016
[2] Evan Johnson, “Misconfigured CORS and why web appsec is not getting easier”, AppSecUSA 2016
[3] Von Jens Müller, "CORS misconfigurations on a large scale"

CORS misconfigurations

1. Origin reflection
2. Validation mistakes
3. HTTPS trust HTTP
4. Trust null
5. Wildcard origin with credentials
6. Trust all of its own subdomains
7. Lack of “Vary: Origin”

How does CORS policy work?
a.com
Server Browser b.com

Server
Load JS

GET request
Origin: http://a.com

Access-Control-Allow-Origin:http://a.com
Access-Control-Allow-Credentials: true

c.com
Server

Load JS

GET request
Origin: http://c.com

Access-Control-Allow-Origin: http://a.com, http://c.com
Access-Control-Allow-Credentials: true

How does CORS policy work?
a.com
Server Browser b.com

Server
Load JS

GET request
Origin: http://a.com

Access-Control-Allow-Origin:http://a.com
Access-Control-Allow-Credentials: true

c.com
Server

Load JS

GET request
Origin: http://c.com

Access-Control-Allow-Origin: http://c.com
Access-Control-Allow-Credentials: true• CORS Specification :

• Access-Control-Allow-Origin = single origin, null or *

P1: Origin reflection

GET /api HTTP/1.1
Host: example.com
Origin: http://attacker.com

HTTP/1.1 200 OK
Access-Control-Allow-Origin: http://attacker.com
Access-Control-Allow-Credentials: true

Browser
example.com

Serverattacker.com
Server

Load JS

P2: Validation mistakes

1) Prefix Match:
• A example of insecure Nginx configuration :

if ($http_origin ~ “http://(example.com|foo.com)”) {
add_header "Access-Control-Allow-Origin" $http_origin;

}

GET /api HTTP/1.1
Host: www. example.com
Origin: http://example.com.evil.com

HTTP/1.1 200 OK
Access-Control-Allow-Origin: http:// example.com.evil.com
Access-Control-Allow-Credentials: true

$

P2: Validation mistakes

2) Suffix Match

• A example of insecure CORS policy generation :
if (reqOrigin.endswith(“example.com”)) {

respHeaders[“Access-Control-Allow-Origin”] = reqOrigin
}

GET /api HTTP/1.1

Host: www.example.com

Origin: http://attackexample.com

HTTP/1.1 200 OK

Access-Control-Allow-Origin: http://attackexample.com

Access-Control-Allow-Credentials: true

P3: HTTPS trust HTTP
• HTTPS provides confidentiality protection
• Prevent man-in-the-middle(MITM) attackers

• When a HTTPS site configured to trust its HTTP site

• eg. Access-Control-Allow-Origin: http://example.com

• A MITM attacker can first hijack HTTP site, and then steal secrets on

HTTPS by issuing cross origin requests

Network attacker

CORS measurement

Target

Extract

Probe

Statistic

Alexa Top 50,000 websites

Extract 97,199,966 subdomains
• From Qihoo 360 network security lab

Actively probe CORS configurations
GET /api HTTP/1.1
Host: www.example.com
Origin: example.com.attacker.com

HTTP/1.1 200 OK
Access-Control-Allow-Origin: http://example.com.attacker.com
Access-Control-Allow-Credentials: true

Measurement results

• 481,589 subdomains configured CORS
• 132,476 subdomains(27.5%) have insecure configurations

CORS Measurement

Secure Insecure

Disclosure & Response

Response by CORS standard organization
• For cross origin sending attacks
• Accepted some of our suggestions and made corresponding

changes to the CORS specification
• Added more restrictions on CORS simple requests, e.g. restricting

header length, restricting access to unsafe ports
• Acknowledged us in the CORS specification.

• For CORS misconfigurations issues
• Misconfigured websites should fix those issues by themselves.
• Agreed to add a security consideration section in the standard

Response by vendors

• Browsers

• Chrome and Firefox: have blocked port 548 and 427, and are

implementing specification changes.

• Safari: are testing those changes with a beta testing program.

• Edge/IE: acknowledged our report.

• CORS frameworks and Websites

• Tomcat(CVE-2018-8014), Yii and Go-CORS fixed

• Some(e.g., nasdaq.com, sohu.com, mail.ru) have fixed the issues.

• We provide an open-source tool for automatic CORS configuration

checking.
38https://github.com/chenjj/CORScanner

CORScanner (https://github.com/chenjj/CORScanner)

Summary

• An empirical security study on CORS
• Discovered multiple security issues in browsers and specs
• 4 categories of browser-side issues
• 7 categories of server-side issues

• Conducted a large-scale measurement
• 27.5% of CORS configured websites have insecure CORS

configuration
• Proposed mitigations
• Some of them have been adopted by web standard and major

browsers.

Thank you!
Twitter: whucjj

Blog: https://www.jianjunchen.com

