
MAN-IN-THE-MACHINE:  
EXPLOIT ILL-SECURE COMMUNICATION  

INSIDE THE COMPUTER

Thanh Bui*, Siddharth Rao*, Markku Antikainen†,

Viswanathan Bojan*, Tuomas Aura*

*Aalto University, Finland †University of Helsinki, Finland

USENIX Security 2018

Traditional network threat model

●  Server and user device are trusted

●  Untrusted network:

○  “man in the middle”

●  Solution: crypto (TLS and web PKI)

to protect communication

2

Server

User device

Client

●  Not all communication goes
over the network

●  Software consists of multiple
local processes that need to
communicate

We try to understand security of
communication inside the computer

Our focus: Inter-process communication (IPC)

3

User device

Frontend

process

 Backend
process

Man-in-the-Machine

(MitMa)

4

Man-in-the-Machine (MitMa)

●  Attacker: Unprivileged user, e.g. coworker, guest user

●  Target:
Multi-user computers

●  Method: Intercept IPC from the attacker’s login session

○  Fast user switching, nohup, remote access (SSH and
remote desktop)

5

Victim’s session

Attacker’s session
 Evil process

Frontend

process

 Backend
process

What makes IPC vulnerable

●  Vulnerable IPC methods: Server binds to a specific identifier
or name and waits for client communication

○  Client and server impersonation possible:

■  Network socket on localhost 127.0.0.1:<port>
■  Named pipe on Windows \\.\pipe\

○  Unauthorized access to Windows USB HID devices
(e.g. security keys)

●  Secure IPC methods: No server waiting for clients

○  Socket pairs

○  Unnamed pipes

6

Case studies

7

●  Native desktop app manages the password vault

●  Browser extension enters passwords into login pages and

stores new ones in the vault

●  Native app and browser extension communicate via IPC

8

Web browser

Native
app

Browser
extension

Standalone password managers

●  Desktop app runs a HTTP server on a port 54512

●  Browser extension connects as a client to the server

●  NO authentication

9

Web browser

Browser
extension

54512

Native
app

Case 1: RoboForm

Client impersonation on RoboForm

1.  Connect to the app as client

2.  Query all passwords managed by the app

10

Web browser

Browser
extension

54512

Native
app

MitMa
attacker

Case 2: 1Password

●  Desktop app runs a WebSocket server on port 6263

●  Server verifies client by checking:

○  Browser extension ID

○  Code signature

○  Server and client processes owned by the same user

●  Client does NOT verify the server

●  Server and client run a cryptographic protocol to agree on a

shared key, but its ad-hoc design is insecure

11

1Password - Key derivation protocol

12

 1. C → S: “hello”
 2. C ← S: code (random 6-digit string)

 3. C → S: hmac_key
 4. Both browser extension and app display the code

 5. User confirms to the app whether they match

 6. C ← S: “authRegistered”
 7. C → S: nonceC

 8. C ← S: nonceS,
mS=HMAC(hmac_key, nonceS||nonceC)

 9. C → S: mC=HMAC(hmac_key, mS)

10. C ← S: “welcome”

11. Both sides derive encryption key

 K=HMAC(hmac_key, ms||mC||”encryption”)

1Password - Key derivation protocol

13

 1. C → S: “hello”
 2. C ← S: code (random 6-digit string)

 3. C → S: hmac_key
 4. Both browser extension and app display the code

 5. User confirms to the app whether they match

 6. C ← S: “authRegistered”
 7. C → S: nonceC

 8. C ← S: nonceS,
mS=HMAC(hmac_key, nonceS||nonceC)

 9. C → S: mC=HMAC(hmac_key, mS)

10. C ← S: “welcome”

11. Both sides derive encryption key

 K=HMAC(hmac_key, ms||mC||”encryption”)

●  Insecure protocol
●  No server verification

Server impersonation

Server impersonation on 1Password

1.  Run WebSocket server on port 6263, and benign server silently
fails

2.  Run the protocol with the browser extension but skip user
confirmation

3.  Send “collectDocuments” to the browser extension

 → Attacker obtains: web form data including login credentials

14

Web browser

Browser
extension

6263

MitMa
attacker

Case 3: FIDO U2F security key

●  2nd authentication factor
based on public-key crypto

●  Challenge-response protocol

○  Browser keeps sending the

challenge to the device

○  User activates the device

by touching a button on it

○  The device responds to

only the first request after
the touch

15

Browser Security
key Server

username,
password

Verify
password

challenge challenge

User
touches
button

response response

Verify
response

Unauthorized access of FIDO U2F key

16

Assumption: Attacker has obtained the 1st authentication factor

Attack steps:

1.  Attacker signs in using the 1st factor and receives a challenge

2.  Attacker keeps sending the challenge to the device at a high

rate

3.  Victim signs in to ANY service using the same security key

and touches the button on the device

 → Attacker receives the response with high probability

On Windows, USB HIDs can be accessed from any user session

17

Application OS IPC Channel Attack

Password
managers

Roboform macOS Network socket Client imp.

Dashlane macOS, Windows Network socket Server imp.

1Password macOS Network socket Server imp.

F-Secure Key macOS, Windows Network socket Client imp.
Server imp.

Password Boss Windows Named pipe MitM

Sticky
Password macOS Network socket Client imp.

Server imp.

Hardware
tokens

FIDO U2F Key Windows USB Unauthorized
access

DigiSign macOS, Windows, Linux Network socket Client imp.

Others

MySQL Windows Named pipe MitM

Transmission macOS, Windows, Linux Network socket Client imp.

Spotify macOS, Windows, Linux Network socket Client imp.

Blizzard macOS, Windows Network socket Client imp.

Keybase Windows Named pipe Server imp.

Mitigation

●  Spatial and temporal separation of users

○  Limit the number of users that have access a computer

○  Disable remote access: SSH, Remote desktop

●  Attack detection easier in IPC than in network

○  Compare owner of client and server processes with OS

APIs

●  Cryptographic protection

○  User-assisted pairing vs TLS and PKI

○  Avoid self-made crypto!

18

Conclusion

IPC is not inherently secure!

●  IPC client-server architecture may be vulnerable to client and

server impersonation and man-in-the-middle attacks

●  Unprivileged user or process can attack IPC of other users on

the same computer

19

