Effective Detection of Multimedia Protocol Tunneling using Machine Learning

<u>Diogo Barradas</u>, Nuno Santos, Luís Rodrigues INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

USENIX Security Symposium '18

Internet Censorship is Widespread Around the Globe

ASIA 14 June 2018

Modi's India

Russia begins blocking access to Telegram

O TUE, APR 17, 2018 - 7:00 AM

June 25, 2018

After John Oliver's Jokes About Xi Jinping, China Blocks HBO Website

A week after Mr. Oliver mocked China's president, the authorities there have taken additional strides to block him on the internet.

By TIFFANY MAY and OLIVIA MITCHELL RYAN

Turkey Gives Its Aggressive TV Cer Control Over the Web

By <u>Firat Kozok</u> 22 de março de 2018 10:42 GMT

No Justification for Spanish Internet Censorship During Catalonian Referendum

BY JEREMY MALCOLM OCTOBER 2, 2017

13:34 27 Dec 2017

The perils of being a journalist in

Cases of Rana Ayyub, Barkha Dutt and Ravish Kumar, who are critical of the government.

Vietnam censors to fight 'internet chaos'

alle antihulat lalled event turet

Local media reports the People's Army has hired more than 10,000 people to tackle "wrongful views".

Read more >

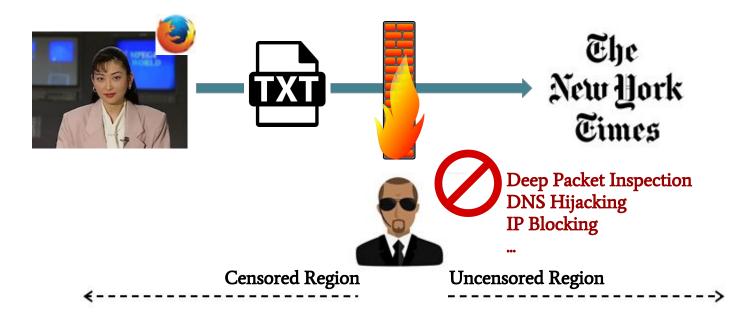
I Rajab has been sentenced to five years in prison for ing the government on Twitter.

I more >

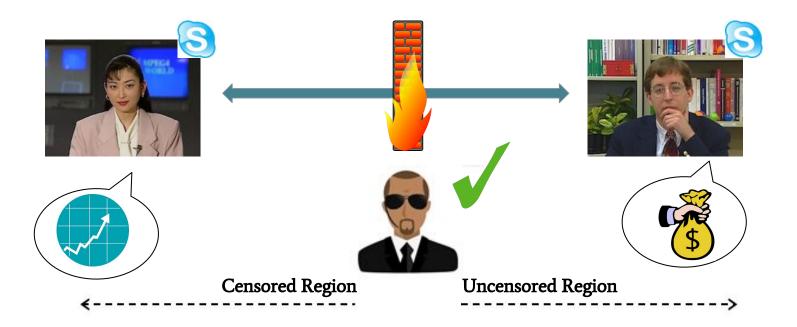
Iran, Like Russia Before It, Tries to Block Telegram App

The encrypted social media app is the service restrictive governments love to hate, but they are often powerless to shut it down entirely.

By THOMAS ERDBRINK



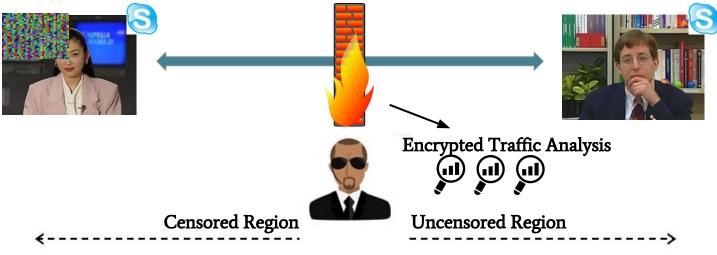
Diogo Barradas, USENIX Security Symposium - 15/08/2018


highlight lack of press freedom.

May 1, 2018


Adversaries Monitor and Control Internet Access

But Some Communication Channels are Still Allowed...



How Can We Encode Data into Multimedia Streams?

Is MPT a Silver Bullet for Evading Censorship?

- Traffic characteristics change with covert data embedding
 - Due to changes in video compression
- Adversaries can detect unusual patterns in encrypted network flows
 - Comparison of packets' size / inter-arrival time probability distributions

Unobservability

A covert channel is **unobservable** if an adversary cannot distinguish streams that carry a covert channel from those that do not

- Previous works have attempted to assess unobservability using simple similarity-based classifiers
 - Results suggested that covert channels were unobservable
- Are these claims sound?
 - If not, they pose life-threatening risks to end users (e.g. journalists)

Limitations of Previous Work

- Different works use different evaluation metrics
- Unobservability assessment is based on a limited set of features
- **Do not** leverage recent advances on ML techniques

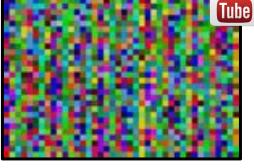
To understand whether state-of-the-art MPT systems are secure

Provide an answer to the following questions:

- How effective existing detection techniques really are?
- Are there classification techniques which offer better results?
- Which features can be used to better detect covert channels?

Contributions

The first extensive experimental study of the unobservability of covert channels produced by state-of-the-art MPT systems


- Compare existing similarity classifiers on the detection of MPT tools
 In general, unable to accurately detect covert channels
- Explore multiple ML techniques for the detection of covert channels
 - Decision tree-based classifiers can effectively detect existing MPT tools
- Analyse the importance of multiple features for MPT detection purposes
 - We find that packet lengths matter the most

Multimedia Protocol Tunneling (MPT) Systems Under Study

Facet (WPES'14)

Unidirectional (A/V) Video Transmission

You

CovertCast (PETS'16)

DeltaShaper (PETS'17)

Unidirectional (V) **Censored Websites Transmission**

Bidirectional (V) Arbitrary Data Transmission

Multimedia Protocol Tunneling (MPT) Systems Under Study

Facet (WPES'14)

Unidirectional (A/V) Video Transmission CovertCast (PETS'16)

Unidirectional (V) Censored Websites Transmission

DeltaShaper (PETS'17)

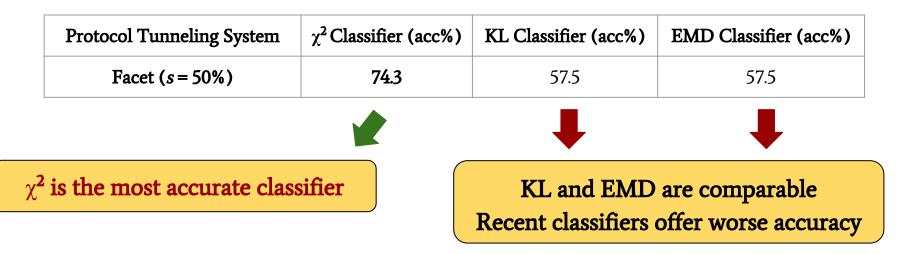
Bidirectional (V) Arbitrary Data Transmission

Adversary Model

- We emulate a passive state-level adversary
 - Able to inspect encrypted traffic streams
 - Uses multiple anomaly detection techniques
- Adversary cannot decrypt the encrypted traffic streams
 - And cannot control the software at users' endpoints
- Adversary does not collude with multimedia applications' providers

The adversary cannot disclose raw multimedia content

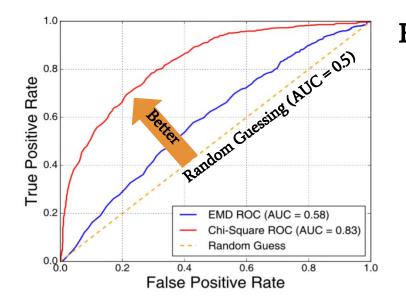
Experimental Setup


- Local Testbed
 - Two Ubuntu VMs on 2.4 GHz Intel Core2 Duo CPU, 8GB RAM
 - Skype for Web, YouTube (QUIC packets)
 - MPT tools prototypes
- Dataset
 - **Facet:** 1000 chat streams, 1000 covert streams
 - **DeltaShaper:** 300 chat streams, 300 covert streams
 - **CovertCast:** 200 live streams, 200 covert streams
- Network packets are collected for 60 seconds

How are Covert Channels Detected Today?

- Previous systems were evaluated with different similarity-based classifiers
 - **Facet** : Pearson's Chi-squared Test (χ 2)
 - **CovertCast** : Kullback-Leibler Divergence (KL)
 - **DeltaShaper** : Earth Mover's Distance (EMD)

- Feature sets are similar (quantized frequency distributions)
 - **Facet** : Packet size bi-grams
 - **CovertCast** : Packet size, inter-arrival delay
 - **DeltaShaper** : Packet size, inter-arrival delay


How Effective are Existing Detection Techniques?

• But adversaries are interested in checking TPR and FPR trade-offs

- Flag as many covert channels as possible
- Erroneously flag few legitimate connections

Similarity-based Classifiers Produce a Large FPR

Facet:

χ²: 90% TPR = **45% FPR EMD**: 90% TPR = **84% FPR**

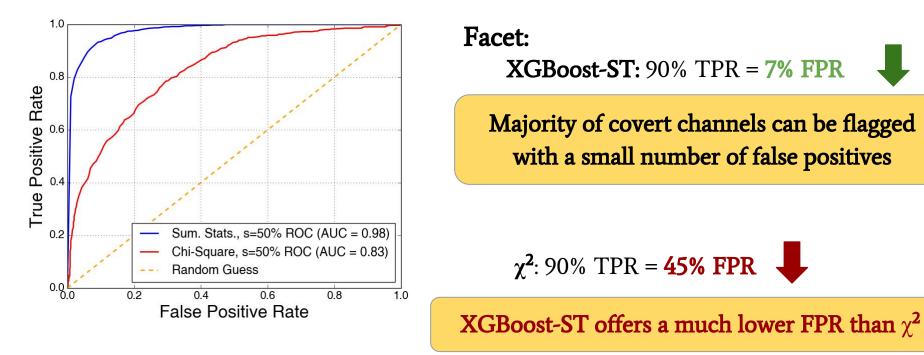
Similarity-based classifiers are not suitable for the effective detection of Facet

Can Other ML Techniques Better Detect Covert Channels?

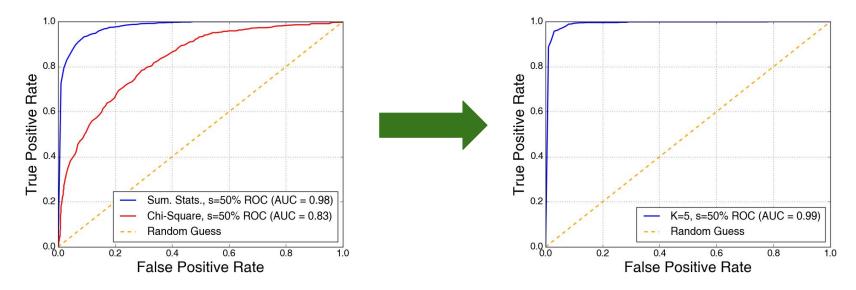
- We assess the effectiveness of multiple decision tree-based classifiers
 - Decision Trees
 - Random Forests
 - eXtreme Gradient Boosting (XGBoost)

- Models are easily interpretable
- Provide the ability to assess feature importance

Which Features Could an Adversary Use?


- Feature set 1: Summary statistics (ST)
 - Total of 166 features, including simple statistics (e.g., max, min, percentiles), high order statistics (e.g., skew), and bursts

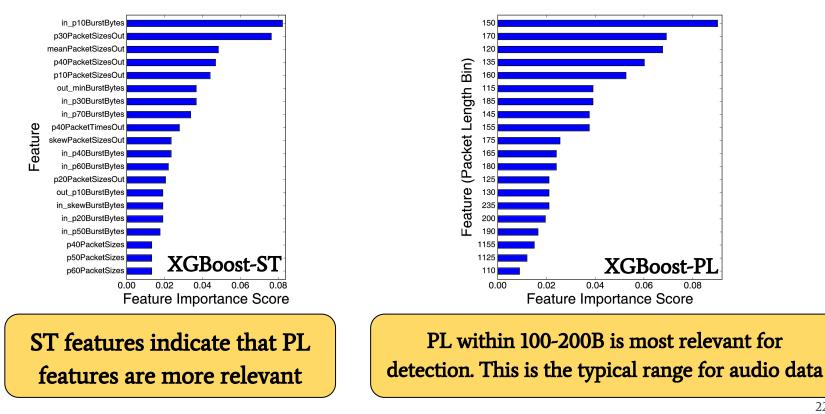
A set of features not previously considered for the detection of MPT tools


- Feature set 2: Quantized packet lengths (PL)
 - Quantized PL frequency distribution for the flow carrying covert data
 - Each K size bin acts as an individual feature (K = 5 bytes)

Decision trees exploit the different relevance of particular ranges of this feature set

XGBoost + ST is Effective at Detecting Covert Channels

Quantized Packet Lengths Outperform Summary Statistics



XGBoost-ST: 90% TPR = **7% FPR**

XGBoost-PL: 90% TPR = **2% FPR**

XGBoost-PL reduces the FPR when flagging the same amount of covert channels

Which Features can Better Identify Facet Traffic?

Is Detection Effective Without a Fully Labeled Dataset?

- XGBoost is effective, but requires a fully labeled dataset
 - Both legitimate and covert traffic samples
- Adversaries may be unable to synthesize covert traffic
 e.g., difficulty in obtaining a particular MPT tool, "zero-day" MPT tools
- We investigate the effectiveness of semi- and unsupervised ML techniques
 - OCSVM **Train with legitimate samples only**
 - Autoencoder
 - Isolation Forest **Frain without labeled samples**

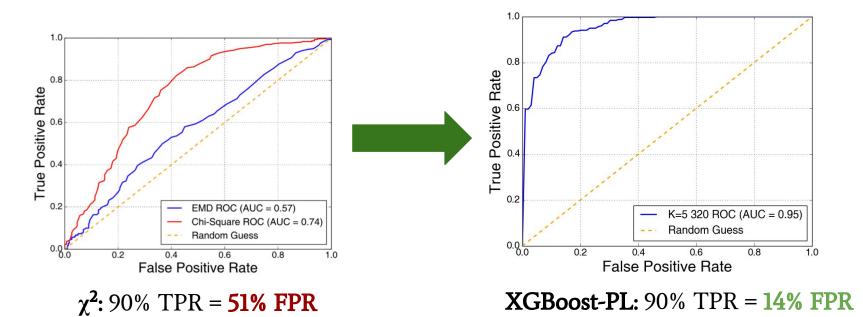
Labeled Data is Required for Accurate Detection

Protocol Tunneling System	XGBoost-PL (AUC)	Autoencoder (AUC)	OCSVM (AUC)	Isolation Forest (AUC)
Facet (<i>s</i> = 50%)	0.99	0.70	0.63	0.56
Autoencoders are the identification o			OCSVMs have limited capability for covert traffic detection	

Overview on the Detection of Other MPT Tools

Facet (WPES'14)

Unidirectional (A/V) Video Transmission


CovertCast (PETS'16)

DeltaShaper (PETS'17)

Unidirectional (V) Censored Websites Transmission Bidirectional (V) Arbitrary Data Transmission

Detection of DeltaShaper

DeltaShaper detection results follow a similar trend to those of Facet detection

Detection of CovertCast

Protocol Tunneling System	χ^2 Classifier (acc%)	KL Classifier (acc%)	EMD Classifier (acc%)
CovertCast	99	92	83

CovertCast can be easily detected by similarity-based classifiers

• How tightly are MPT designs coupled to carrier protocols / applications?

• Results suggest that implementation changes on carrier protocols can affect the unobservability of covert channels

Conclusions

- Existing MPT tools can be effectively detected despite previous unobservability claims provided by similarity-based classifiers
- The analysis of feature importance offers potentially actionable data for the development of new MPT designs
- More sophisticated semi-supervised ML techniques are promising for the detection of MPT tools

https://web.ist.utl.pt/diogo.barradas