
NAVEX: Precise and Scalable Exploit
Generation for Dynamic Web Applications

Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and
V.N. Venkatakrishnan

University of Illinois at Chicago

1

Web Applications
• Common Characteristics

• Content generated on the fly to improve usability and responsiveness
• Tasks require a series of steps to accomplish

• e.g., online shopping: view à select à add to cart à checkout
• Dependencies among them

• However
• Increase application complexity
• Increase analysis difficulty

2

Web Application Example

• How to Exploit?
• Find a vulnerability
• Craft an exploit string for that vulnerability
• Find a navigation path to the vulnerability

• e.g.: http…view.php à http…cart.php à http..checkout.php

• Exploit is:

1. http://localhost../view.php?item_quant=3&item_name=book

2. http://localhost../addToCart.php?type=order

3. http://localhost.../checkout.php?delivery_desc=nothing'; DROP table TB- -&submit=yes

3

view.php addToCart.php checkout.php

Problem & Challenges
• Problem: How to automatically construct exploits for large and complex web

application?
• Challenge #1: Scalability:

• Large code base consisting of hundreds of modules with large number of intra-
module execution paths

• Challenge #2: Sinks reachability:
• Have to derive inputs that reach ‘deep sinks’
• Exploit input has to

• navigate through the complex dependencies among modules
• satisfy module and path constraints

4

Challenges
• Challenge #3: Dynamic features of web applications

• dynamically generated content may drive the navigation of the application to
vulnerable sinks

• Forms, links, JavaScript content
• Challenge #4: handling multiple vulnerability classes

• e.g., injection vulnerabilities (SQLI, XSS, etc.) and logic vulnerabilities (e.g.,
EAR)

• minimal changes to the analysis
Goal: Automatic exploit generation approach that addresses these

challenges

5

Our Main Contribution: NAVEX, a system that has identified over two
hundred exploits in modern PHP web applications

Approach Overview
• Find vulnerable sinks using static analysis methods
• Build a graph representation of navigation structure of applications

dynamically
• Find navigation paths to the identified vulnerabilities
• Final exploit construction

6

NAVEX Architecture

7

APPROACH Abeer | February 7, 2018

Vulnerability
Spec.

Vulnerable Sinks
Identification

Vulnerable Sinks Concrete Exploits
Generation

App source
code

Attack Dictionary

Exploits
Exploit Strings

App source
code

Attack
Dictionary

Phase I : Vulnerable Sink Identification

SQLI
XSS

File Inclusion
...

Graph
Construction Graph Traversal Formula

Generation Solver

Sanitizations Sinks Traversal Type Attack Strings Attack Instance

NAVEX

Graph
Construction

Graph
Traversal

Formula
Generation

Step I: Vulnerable Sinks Identification

8[Vulnerable Sinks, Exploit Strings]

Source
Code

Attack
Dictionary

• Graph model of source code
• Based on Code Property Graphs (CPGs)

• CPG = AST+CFG+ call graph+DDG
• Extend CPGs with sanitization and database constraints tags

• Find vulnerable paths to sensitive sinks
• Path sensitive analysis
• Types: Forward and backward traversals based on vulnerability type

• E.g., backward search for injection vulnerabilities

• Construct formulas from vulnerable path statements
• Use solver to generate exploit strings

Step II: Concrete Exploits Generation

Dynamic
Execution

Navigation
Graph

Final Exploit
Generator

9Exploits

Solver

• Links: stored and used as new URLs to crawl
• Forms: Generate form inputs automatically

• Extract constraints from forms
• JavaScript : concolic execution based on NoTamper (Bisht et al.,CCS’10)

• An application-wide navigation graph
• represents possible sequences of module executions

• Directed graph
• node: HTTP request
• edge: navigation between nodes (type is link or form)

• Search the NG to find navigation paths to vulnerable sinks

App

Crawler

10

Client Formula
extraction

Constraint
Solver

HTTP request
Formulation crawler

Trace
Analyzer

Store info/create
NG Node

Extract Trace
constraints (Fserver)

Fform:
Fhtml ∧ Fjs

Fform: Fhtml ∧ Fjs ∧ Fserver

Solver
model

Input Generation

Combining Static & Dynamic Results

• Example:

• vulnerability in PathToApp/App/checkout.php, checkout.php is included by

hold.php (no direct access)

• Navigation Graph: no node of a URL = “….checkout.php”

• Problem: combining the results produced by the step of vulnerable sink

identification (static analysis) with the Navigation Graph (dynamically generated).

• Solution: Inclusion Map

• Constructed statically, [Parent file -> included files]

11

Searching Navigation Graph

• Input :
• vulnerable sink (destination URL) = http://localhost/App/hold.php
• exploit string is msg =<script>alert(”XSS”);</script> (GET)
• Public URL (source URL) = http://localhost/App/selectBooks.php

• Search Results:
• nodes of [id=2, id=3, id=4, id=5, id=6]

• http://localhost/App/hold.php?step=checkout&msg=done
• http://localhost/App/hold.php?step=checkout&msg=<script>alert(”XSS”);</script>

12

url:http://localhost/App/select
Books.php

id: 2

form_params:[book_name=
intro to CS by author1,
edition=2,publisher=aaaaaaa

role: [user, user]

form

url:http://localhost/App/
selectBooks.php?action
=borrow

id: 3

role: [user, user]

link

url:http://localhost/App/
hold.php

id: 4

role: [user, user]

url:http://localhost/App/
hold.php?step=
checkout

id: 5

role: [user, user]

link

url:http://localhost/App/
hold.php?step
=checkout&msg=done

id: 6

role: [user, user]

link

ID: 2

URL:http://localhost/App/select
Books.php

Form_Params: [book_name=
intro to CS by author1,
edition=2,publisher=aaaaaaa]

Role: [uName, uPass]

ID: 3

URL:http://localhost/App/
selectBooks.php?action
=borrow

Role: [uName, uPass]

FORM

ID: 4

URL:http://localhost/
App/hold.php

Role: [uName, uPass]

LINK

ID: 5

URL:http://localhost/
App/hold.php?step=
checkout

Role: [uName, uPass]

LINK

ID: 6

URL:http://localhost/App
/hold.php?step
=checkout&msg=done

Role: [uName, uPass]

LINK

Final Exploit

1. http://localhost/App/index.php
2. http://localhost/App/selectBooks.php

POST params:[book name=intro to CS by author1, edition=2,publisher=aaaaaaa]
3. http://localhost/App/selectBooks.php?action=borrow
4. http://localhost/App/hold.php
5. http://localhost/App/hold.php?step=checkout
6. http://localhost/App/hold.php?step=checkout&msg=<script>alert(”XSS”);</script>

13

url:http://localhost/App/select
Books.php

id: 2

form_params:[book_name=
intro to CS by author1,
edition=2,publisher=aaaaaaa

role: [user, user]

form

url:http://localhost/App/
selectBooks.php?action
=borrow

id: 3

role: [user, user]

link

url:http://localhost/App/
hold.php

id: 4

role: [user, user]

url:http://localhost/App/
hold.php?step=
checkout

id: 5

role: [user, user]

link

url:http://localhost/App/
hold.php?step
=checkout&msg=done

id: 6

role: [user, user]

link

ID: 2

URL:http://localhost/App/select
Books.php

Form_Params: [book_name=
intro to CS by author1,
edition=2,publisher=aaaaaaa]

Role: [uName, uPass]

ID: 3

URL:http://localhost/App/
selectBooks.php?action
=borrow

Role: [uName, uPass]

FORM

ID: 4

URL:http://localhost/
App/hold.php

Role: [uName, uPass]

LINK

ID: 5

URL:http://localhost/
App/hold.php?step=
checkout

Role: [uName, uPass]

LINK

ID: 6

URL:http://localhost/App
/hold.php?step
=checkout&msg=done

Role: [uName, uPass]

LINK

EVALUATION

14

Dataset
• 26 real-world open-source PHP web applications

• Total of 3.2M SLOC and 22K PHP files

• Applications selection criteria

• Popular and large PHP apps
• Such as WordPress, OpenConf, HotCRP, Drupal, Gallery, Joomla,

LimeSurvey, Collabtive, and MediaWiki
• Comparison with state-of-the-art work in exploit generation (e.g.,

Chainsaw (Alhuzali et al., CCS’16)) and vulnerability analysis (e.g., RIPS
(Dahse and Holz, NDSS’14))

15

Results Summary
• NAVEX constructed a total of 204 exploits

• 195 are on injection vulnerabilities (SQLI and XSS).
• 9 are on logic vulnerabilities (EAR).

• The enhanced CPG reduced FPs by 87% on average.

• Client-side code analysis for building the navigation graph enhanced the precision
of exploit generation by 54% on average.

• Drill down as deep as 6 HTTP requests to stitch together exploits.

16

SQLI Exploits
• Reported 155 SQLI exploitable sinks
• No false positives
• Constructed 105 concrete SQLI exploits
• Vulnerable web apps

• osCommerce (2.3.3)
• phpBB (2.0.23)
• myBloggie, Scarf, Dnscript, WeBid, Eve, SchoolMate, geccbblite, FAQforge,

and WebChess

17

XSS Exploits
• Found 133 XSS exploitable sinks

• 5 false positives
• Generated 90 XSS exploits

• Vulnerable web apps

• HotCRP (2.60)
• osCommerce (2.3.4)
• osCommerce (2.3.3)
• CPG
• MediaWiki
• phpBB (2.0.23)
• myBloggie, Scarf, Dnscript, WeBid, Eve, SchoolMate, FAQforge, and

WebChess

18

EAR EXPLOITS (LOGIC EXPLOITS)

• Found 22 EAR vulnerabilities

• 3 false positives

• Generated 9 EAR exploits

• Vulnerable web apps
• HotCRP (2.100)
• HotCRP (2.60)
• OpenConf
• osCommerce (2.3.4)
• osCommerce (2.3.3)
• LimeSurvey
• Collabtive
• MediaWiki
• myBloggie, WeBid, and Eve

19

Performance and Scalability
• Performance: total time to find exploitable sinks and to generate exploits per

vulnerability type.

• Vulnerability identification from 17.28 to 109.27 minutes.
• Exploit generation from 1.38 to 40.20 minutes.

20

37.75

109.27

27.97
22.53 21.33 17.28

8.27

40.20

0.00 0.00 0.00 1.38
0

20

40

60

80

100

120

SQLI XSS
File Inclusion

Command Injection
Code Execution EAR

Exp. Sinks Finding Time (Mnts.)

Exploit Generation Time (Mnts.)

Effect of Client-side Code Analysis
• Forms are common

• Number of unique forms ranges from 3 to 186 (average of 45 form/application).
• Input generation and constraints extraction from client-side code à improve the

crawling coverage.
• NAVEX constructed more exploits.

21

23

55

5

105
90

9

0

100

200

SQLI XSS EAR

Exploits Without Client-Side Code
Exploits With Client-Side Code

Conclusion
• NAVEX is an automatic exploit generation system that considers

• dynamic features and the navigational complexities of modern web
applications

• NAVEX constructed 204 exploits
• 195 are on injection vulnerabilities
• 9 are on logic vulnerabilities

• Outperform prior work on the precision, efficiency, and scalability of exploit
generation.

22

THANK YOU FOR YOUR ATTENTION
QUESTIONS?

23

NAVEX is available at
https://github.com/aalhuz/navex

REFERENCES
1. G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su. Dynamic test input generation for web applications. In Proceedings of the 2008 international symposium on Software testing and

analysis, pages 249–260, 2008.

2. M. Martin and M. S. Lam. Automatic generation of xss and sql injection attacks with goal-directed model checking. In Proceedings of the 17th conference on Security symposium, pages 31–43, 2008.

3. J. Dahse and T. Holz. Simulation of Built-in PHP Features for Precise Static Code Analysis. In Symposium on Network and Distributed System Security (NDSS), 2014.

4. J. Dahse and T. Holz. Static Detection of Second-Order Vulnerabilities in Web Applications. In 23rd USENIX Security Symposium (USENIX Security 14), pages 989–1003, 2014.

5. B. Eshete, A. Alhuzali, M. Monshizadeh, P. A. Porras, V. N. Venkatakrishnan, and V. Yegneswaran. EKHunter: A Counter-Offensive Toolkit for Exploit Kit Infiltration. In 22nd Annual Network and
Distributed System Security Symposium, NDSS, 2015.

6. S. Huang, H. Lu, W. Leong, and H. Liu. CRAXweb: Automatic Web Application Testing and Attack Generation. In IEEE 7th International Conference on Software Security and Reliability, SERE, pages 208–
217, 2013.

7. A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic Creation of SQL Injection and Cross-Site Scripting Attacks. In IEEE 31st International Conference on Software Engineering (ICSE), pages
199–209, 2009.

8. G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection vulnerabilities. In ACM Sigplan Notices, volume 42, pages 32–41. ACM, 2007.

9. D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna. Multi-module Vulnerability Analysis of Web-based Applications. In the 14th ACM Conference on Computer and Communications Security (CCS),
pages 25–35, 2007.

10. D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic Patch-Based Exploit Generation is Possible: Techniques and Implications. In Proceedings of the 2008 IEEE Symposium on Security and
Privacy, 2008.

11. T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG: Automatic Exploit Generation. In NDSS, volume 11, pages 59–66, 2011.

12. H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Automatic Generation of Data-Oriented Exploits. In 24th USENIX Security Symposium (USENIX Security 15), pages 177–192. USENIX Association,
2015.

13. Yamaguchi, F., Golde, N., Arp, D., & Rieck, K. (2014, May). Modeling and discovering vulnerabilities with code property graphs. In Security and Privacy (SP), 2014 IEEE Symposium on (pp. 590-604). IEEE.

14. Backes, M., Rieck, K., Skoruppa, M., Stock, B., & Yamaguchi, F. (2017, April). Efficient and Flexible Discovery of PHP Application Vulnerabilities. In Security and Privacy (EuroS&P), 2017 IEEE European Symposium
on (pp. 334-349). IEEE.

15. Alhuzali, A., Eshete, B., Gjomemo, R., & Venkatakrishnan, V. N. (2016, October). Chainsaw: Chained automated workflow-based exploit generation. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (pp. 641-652). ACM.

16. Bisht, P., Hinrichs, T., Skrupsky, N., Bobrowicz, R., & Venkatakrishnan, V. N. (2010, October). NoTamper: automatic blackbox detection of parameter tampering opportunities in web applications. In Proceedings of
the 17th ACM conference on Computer and communications security (pp. 607-618). ACM. 24

