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Web Applications
• Common Characteristics

• Content generated on the fly to improve usability and responsiveness 
• Tasks require a series of steps to accomplish

• e.g., online shopping: view à select à add to cart à checkout
• Dependencies among them 

• However
• Increase application complexity  
• Increase analysis difficulty 
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Web Application Example

• How to Exploit?
• Find a vulnerability
• Craft an exploit string for that vulnerability
• Find a navigation path to the vulnerability

• e.g.: http…view.php à http…cart.php à http..checkout.php

• Exploit is: 

1. http://localhost../view.php?item_quant=3&item_name=book

2. http://localhost../addToCart.php?type=order

3. http://localhost.../checkout.php?delivery_desc=nothing'; DROP table TB- -&submit=yes
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Problem & Challenges
• Problem: How to automatically construct exploits for large and complex web 

application?
• Challenge #1: Scalability:

• Large code base consisting of hundreds of modules with large number of intra-
module execution paths

• Challenge #2: Sinks reachability:
• Have to derive inputs that reach ‘deep sinks’
• Exploit input has to 

• navigate through the complex dependencies among modules
• satisfy module and path constraints
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Challenges
• Challenge #3: Dynamic features of web applications

• dynamically generated content may drive the navigation of the application to 
vulnerable sinks 

• Forms, links, JavaScript content
• Challenge #4: handling multiple vulnerability classes 

• e.g., injection vulnerabilities (SQLI, XSS, etc.) and logic vulnerabilities (e.g., 
EAR)

• minimal changes to the analysis
Goal: Automatic exploit generation approach that addresses these 

challenges
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Our Main Contribution: NAVEX, a system that has identified over two 
hundred exploits in modern PHP web applications 



Approach Overview
• Find vulnerable sinks using static analysis methods
• Build a graph representation of navigation structure of applications 

dynamically
• Find navigation paths to the identified vulnerabilities
• Final exploit construction
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NAVEX Architecture
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• Graph model of source code
• Based on Code Property Graphs (CPGs)

• CPG = AST+CFG+ call graph+DDG
• Extend CPGs with sanitization and database constraints tags 

• Find vulnerable paths to sensitive sinks
• Path sensitive analysis
• Types: Forward and backward traversals based on vulnerability type

• E.g., backward search for injection vulnerabilities 

• Construct formulas from vulnerable path statements
• Use solver to generate exploit strings 



Step II: Concrete Exploits Generation
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Solver

• Links: stored and used as new URLs to crawl
• Forms: Generate form inputs automatically

• Extract constraints from forms
• JavaScript : concolic execution based on NoTamper (Bisht et al.,CCS’10)

• An application-wide navigation graph
• represents possible sequences of module executions

• Directed graph 
• node: HTTP request 
• edge: navigation between nodes (type is link or form)

• Search the NG to find navigation paths to vulnerable sinks

App

Crawler
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Combining Static & Dynamic Results

• Example: 

• vulnerability in PathToApp/App/checkout.php, checkout.php is included by 

hold.php (no direct access)

• Navigation Graph: no node of a URL = “….checkout.php” 

• Problem: combining the results produced by the step of vulnerable sink 

identification (static analysis) with the Navigation Graph (dynamically generated). 

• Solution: Inclusion Map

• Constructed statically, [Parent file -> included files]

11



Searching Navigation Graph

• Input : 
• vulnerable sink (destination URL) = http://localhost/App/hold.php
• exploit string is msg =<script>alert(”XSS”);</script> (GET)
• Public URL (source URL) = http://localhost/App/selectBooks.php

• Search Results: 
• nodes of [id=2, id=3, id=4, id=5, id=6]  

• http://localhost/App/hold.php?step=checkout&msg=done
• http://localhost/App/hold.php?step=checkout&msg=<script>alert(”XSS”);</script> 
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url:http://localhost/App/select 
Books.php

id: 2

form_params:[book_name= 
intro to CS by author1, 
edition=2,publisher=aaaaaaa

role: [user, user]
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url:http://localhost/App/ 
selectBooks.php?action 
=borrow

id: 3

role: [user, user]

link

url:http://localhost/App/ 
hold.php

id: 4

role: [user, user]

url:http://localhost/App/ 
hold.php?step= 
checkout

id: 5

role: [user, user]

link

url:http://localhost/App/ 
hold.php?step 
=checkout&msg=done
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role: [user, user]

link
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URL:http://localhost/App/select 
Books.php

Form_Params: [book_name= 
intro to CS by author1, 
edition=2,publisher=aaaaaaa]
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selectBooks.php?action 
=borrow
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ID: 6
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/hold.php?step 
=checkout&msg=done

Role: [uName, uPass]

LINK



Final Exploit 

1. http://localhost/App/index.php
2. http://localhost/App/selectBooks.php

POST params:[book name=intro to CS by author1, edition=2,publisher=aaaaaaa]
3. http://localhost/App/selectBooks.php?action=borrow
4. http://localhost/App/hold.php 
5. http://localhost/App/hold.php?step=checkout
6. http://localhost/App/hold.php?step=checkout&msg=<script>alert(”XSS”);</script>
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EVALUATION
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Dataset
• 26 real-world open-source PHP web applications 

• Total of 3.2M SLOC and 22K PHP files

• Applications selection criteria 

• Popular and large PHP apps
• Such as WordPress, OpenConf, HotCRP, Drupal, Gallery, Joomla, 

LimeSurvey, Collabtive, and MediaWiki
• Comparison with state-of-the-art work in exploit generation (e.g., 

Chainsaw (Alhuzali et al., CCS’16)) and vulnerability analysis (e.g., RIPS 
(Dahse and Holz, NDSS’14)) 
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Results Summary
• NAVEX constructed a total of 204 exploits

• 195 are on injection vulnerabilities (SQLI and XSS).
• 9 are on logic vulnerabilities (EAR). 

• The enhanced CPG reduced FPs by 87% on average. 

• Client-side code analysis for building the navigation graph enhanced the precision 
of exploit generation by 54% on average. 

• Drill down as deep as 6 HTTP requests to stitch together exploits. 
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SQLI Exploits
• Reported 155 SQLI exploitable sinks
• No false positives
• Constructed 105 concrete SQLI exploits
• Vulnerable web apps 

• osCommerce (2.3.3)
• phpBB (2.0.23)
• myBloggie, Scarf, Dnscript, WeBid, Eve, SchoolMate, geccbblite, FAQforge, 

and WebChess
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XSS Exploits
• Found 133 XSS exploitable sinks

• 5 false positives
• Generated 90 XSS exploits 

• Vulnerable web apps

• HotCRP (2.60) 
• osCommerce (2.3.4) 
• osCommerce (2.3.3) 
• CPG 
• MediaWiki
• phpBB (2.0.23) 
• myBloggie, Scarf, Dnscript, WeBid, Eve, SchoolMate, FAQforge, and 

WebChess
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EAR EXPLOITS (LOGIC EXPLOITS)

• Found 22 EAR vulnerabilities 

• 3 false positives

• Generated 9 EAR exploits

• Vulnerable web apps
• HotCRP (2.100) 
• HotCRP (2.60) 
• OpenConf
• osCommerce (2.3.4) 
• osCommerce (2.3.3) 
• LimeSurvey
• Collabtive
• MediaWiki
• myBloggie, WeBid, and Eve 
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Performance and Scalability
• Performance: total time to find exploitable sinks and to generate exploits per 

vulnerability type.

• Vulnerability identification from 17.28 to 109.27 minutes.
• Exploit generation from 1.38 to 40.20 minutes.
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Effect of Client-side Code Analysis
• Forms are common

• Number of unique forms ranges from 3 to 186 (average of 45 form/application). 
• Input generation and constraints extraction from client-side code  à improve the 

crawling coverage. 
• NAVEX constructed more exploits.
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Conclusion
• NAVEX is an automatic exploit generation system that considers

• dynamic features and the navigational complexities of modern web 
applications 

• NAVEX constructed 204 exploits
• 195 are on injection vulnerabilities
• 9 are on logic vulnerabilities

• Outperform prior work on the precision, efficiency, and scalability of exploit 
generation. 
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THANK YOU FOR YOUR ATTENTION
QUESTIONS?
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NAVEX is available at 
https://github.com/aalhuz/navex
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