25th USENIX Security Symposium – Austin, TX, August 10th, 2016

ENHANCING BITCOIN SECURITY AND PERFORMANCE WITH STRONG CONSISTENCY VIA COLLECTIVE SIGNING

Lefteris Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser and Bryan Ford EPFL

Swiss Federal Institute of Technology Lausanne

Cryptocurrency Ecosystem

Distributed Ledger (Blockchain)

- Cheaper transaction management
- M2M payments (IoT)

3

(PA

Distributed Ledger (Blockchain)

- Real-time verification is not safe (need 1 hour of delay)
- Throughput is low (7 tx/sec)

(PA)

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Transaction Verification in Bitcoin

(PH

Transaction Conflicts

Transaction Conflicts

 $A \rightarrow B$ $A \rightarrow C$

Resolving Conflicts

Proof-of-Work

BLOCK

H(Block, nonce=0) =abc3426fe31233 H(Block, nonce=1) =fe541200abc229 H(Block, nonce=2) =0bc3429831233

(Pfl

 $H(Block, nonce=2^{\circ}) = 0000 fed 98312$

The Blockchain

(PH

Problem Statement

- 12
- In Bitcoin there is no verifiable commitment of the system that a block will persist

fl,

- Clients rely on probabilities to gain confidence.
- Probability of successful fork-attack decreases exponentially

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Strawman Design: PBFTCoin

- 3f+1 fixed "trustees" running PBFT* to withstand f failures
- Non-probabilistic strong consistency
 - Low latency
 Low latency
- No forks/inconsistencies
 - No double-spending

*Practical Byzantine Fault Tolerance [Castro/Liskov]

(14)

Strawman Design: PBFTCoin

- Problem: Needs a static consensus group
 - Problem: Scalability
 - \circ O(n²) communication complexity
 - O(n) verification complexity
 - Absence of third-party verifiable proofs (due to MACs)

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin

• Opening the consensus group

- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Opening the Consensus Group

- PoW against Sybil attacks
- One share per block
 - $_{\circ}$ % of shares $^{\infty}$ hash-power
- Window mechanism
 - Protect from inactive miners

(14)

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

From MACs to Signing

- Substitute MACs with public-key cryptography
 - ECDSA provides more efficiency
 - Third-party verifiable
 - PoW Blockchain as PKI
 - Enables sparser communication patterns (ring or star topologies)

fl,

From MACs to Collective Signing

(14)

- Can we do better than O(n) communication complexity?
 Multicast protocols transmit information in O(log n)
 - Use trees!!

20

- Can we do better than O(n) complexity to verify?
 - Schnorr multisignatures could be verified in O(1)
 - Use aggregation!!
- Schnorr multisignatures + communication trees
 - = Collective Signing [Syta et all, IEEE S&P '16]

CoSi

- Efficient collective signature, verifiable as a simple signature
 - 80 bytes instead of 9KB for 144* co-signers (Ed25519)

* Number of ~10-minute blocks in 1-day time window

(Pf)

Discussion

- CoSi is not a BFT protocol
- PBFT can be implemented over two subsequent CoSi rounds

(PH)

Problem Statement

 In Bitcoin ByzCoin there is no a verifiable commitment of the system that a block will persist

(14)

- 2. Throughput is limited by forks
 - Increasing block size increases fork probability
 - Liveness exacerbation

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Bitcoin-NG [Eyal et all, NSDI '16]

 Makes the observation that block mining implement two distinct functionalities (14)

- Transaction verification
- Leader election
- But, Bitcoin-NG inherits many of Bitcoin's problems
 - Double-spending
 - Leader is checked after his epoch ends

Decoupling Transaction Verification from Leader Election

Key blocks:
 PoW & share value
 Leader election

• Microblocks:

26

- Validating client transactions
- o Issued by the leader

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Performance Evaluation

28

(EPFL)

- Experiments run on DeterLab network testbed
 - Up to 1,008* miners multiplexed atop 36 machines
 - Impose 200 ms roundtrip latencies between all servers
 - Impose 35 Mbps bandwidth per miner

Performance Evaluation

- Key questions to evaluate:
 - What size consensus groups can ByzCoin scale to?
 - What transaction throughput can it handle?

Consensus Latency

Throughput

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Limitations

- Attacker with $\geq 1/3$ of the shares
 - Can trivially censor transactions / DoS the system
 - Can double-spend if he splits the network
- Can currently only scale-up not scale-out
- Leader can exclude miners from the consensus

Future Work

- Alternatives to PoW
- Sharding to enable scaling-out
- Incremental deployment to existing cryptocurrencies
- Fail more gracefully under 33% attacks

Conclusion

- Use Collective Signing to scale BFT protocols
- Use PoW to create hybrid permissionless BFT
- Combine the above with Bitcoin-NG to create ByzCoin
- Demonstrate experimentally its practicality
- ByzCoin increases the security and performance of cryptocurrencies.

eleftherios.kokoriskogias@epfl.ch

people.epfl.ch/eleftherios.kokoriskogias

(14)

