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Face Authentication: Convenient Security
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https://www.inverse.com/article/13870-pay-with-a-selfie-why-google-amazon-and-mastercard-want-us-to-do-it

Evolution of Adversarial Models
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Evolution of Adversarial Models

= Attack: Still-image Spoofing

" Defense: Liveness Detection
* Attack:Video Spoofing

* Defense: Motion Consistency
» Attack: 3D-Printed Masks

USENIX Securi



Virtual U: A New Attack

We introduce a new VR-based attack on face authentication systems
solely using publicly available photos of the victim

USENIX Security 2016



Virtual U: A New Attack
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Leveraging Social Media
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Landmark Extraction
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3D Face Model

|dentity Variation
(e.g., thin-to-heavyset)

Expression Variation
(e.g., frowning-to-smiling)
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3D Face Model
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3D Face Model
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3D Face Model
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3D Face Model
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Multi-Image Modeling

Single image

Multiple images
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Texturing
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Texturing
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Gaze Correction
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Gaze Correction




Virtual U: A New Attack
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Expression Animation
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VR Display

N
Eim |||| UNC-CS USENIX Security 2016 30
S\



Experiments

TrueKey

BiolD

Interaction-based
liveness detection

Motion-based
liveness detection

Texture-based
liveness detection
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Experiments

= 20 participants
" Aged 24 to 44
" |4 males, 6 females
= Various ethnicities

" Two tests
" Indoor photo of the subject in the same environment as registration

" Publicly accessible photos
" Anywhere from 3 to 27 photos per person
" Low-, medium-, and high-quality
" Potentially strong changes in appearance over time
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Experiments

UNC-CS
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Observations

" Medium- and high-resolution photos work best
" Photos from professional photographers (weddings, etc.)

* Group photos provide consistent frontal views
= Often lower resolution

* Only a small number of photos required
* One or two forward-facing photos
* One or two higher-resolution photos
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Experiments

®* Virtual U is successful
against liveness detection
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Experiments

®* Virtual U is successful
against liveness detection

" Also successful against
motion consistency
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Experiments

" “Seeing Your Face is Not Enough: An Inertial Sensor-Based Liveness
Detection for Face Authentication” (Li et al., ACM CCS’l5)
" Device motion measured by inertial sensor data
" Head pose estimated from input video

" Train a classifier to identify
real data (correlated signals) versus
spoofed video data

' ——Sensor Estimation
3 ! - - -Camera Estimation
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Frame Number

Normalized Movement Vector
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Experiments

Test Result (Accept Rate)

Training Data
(Pos. Data vs. Neg. Data)
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Experiments
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Mitigations

" Alternative/additional hardware
" Infrared imaging (e.g.Windows Hello)
* Random structured light projection

image source
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http://www.bmva.org/bmvc/1998/pdf/p067.pdf

Mitigations

" Alternative/additional hardware
" Infrared imaging (e.g.Windows Hello)
* Random structured light projection

" Improved defense against
low-resolution synthetic textures

Original Downsized to 50px
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Conclusion

" We introduce a new VR-based attack on face authentication systems
solely using publicly available photos of the victim

" This attack bypasses existing defenses of liveness detection and
motion consistency

= At a minimum, face authentication software must improve against VR-
based attacks with low-resolution textures

" The increasing ubiquity of VR will continue to challenge computer-
vision-based authentication systems
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Thank you!

Questions?
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