Virtual U: Defeating Face Liveness Detection by Building Virtual Models From Your Public Photos

Yi Xu, True Price, Jan-Michael Frahm, and Fabian Monrose

Department of Computer Science, University of North Carolina at Chapel Hill

USENIX Security

August 11, 2016

Face Authentication: Convenient Security

Attack: Still-image Spoofing

- Attack: Still-image Spoofing
- Defense: Liveness Detection

- Attack: Still-image Spoofing
- Defense: Liveness Detection
- Attack: Video Spoofing

Attack: Still-image Spoofing

Defense: Liveness Detection

Attack: Video Spoofing

Defense: Motion Consistency

- Attack: Still-image Spoofing
- Defense: Liveness Detection
- Attack: Video Spoofing
- Defense: Motion Consistency
- Attack: 3D-Printed Masks

Virtual U: A New Attack

We introduce a new VR-based attack on face authentication systems solely using publicly available photos of the victim

Virtual U: A New Attack

Input Web Photos

Landmark Extraction

3D Model Reconstruction

Image-based Texturing

Gaze Correction

Viewing with Virtual Reality System

Expression Animation

Leveraging Social Media

Landmark Extraction

$$S = \overline{S} + A^{ia} \alpha^{id} + A^{exp} \alpha^{exp}$$

$$S = \overline{S} + A^{ia} \alpha^{id} + A^{exp} \alpha^{exp}$$

Pose α^{id} α^{exp}

$$S = \overline{S} + A^{ia} \alpha^{id} + A^{exp} \alpha^{exp}$$

Pose α^{id} α^{exp}

$$S = \overline{S} + A^{ia} \alpha^{id} + A^{exp} \alpha^{exp}$$

Pose α^{id} α^{exp}

Pose α^{exp}

Pose α^{exp}

 α^{id}

Multi-Image Modeling

Texturing

Direct Texturing

2D Poisson Editing

Texturing

Direct Texturing

2D Poisson Editing

3D Poisson Editing

Gaze Correction

Gaze Correction

Virtual U: A New Attack

Input Web Photos

Landmark Extraction

3D Model Reconstruction

Gaze Correction

Viewing with Virtual Reality System

Expression Animation

Expression Animation

$S = \bar{S} + A^{id}\alpha^{id} + A^{exp}\alpha^{exp}$

Smiling

Laughing

Blinking

Raising Eyebrows

Printed Marker

VR System

Authentication Device

VR Display

- 20 participants
 - Aged 24 to 44
 - 14 males, 6 females
 - Various ethnicities
- Two tests
 - Indoor photo of the subject in the same environment as registration
 - Publicly accessible photos
 - Anywhere from 3 to 27 photos per person
 - Low-, medium-, and high-quality
 - Potentially strong changes in appearance over time

Mobius

100% 100% 100%

100%

100%

85%	1.6
80%	1.5
70%	1.3
55%	1.7
0%	

TrueKey

BioID

1U

Observations

- Medium- and high-resolution photos work best
 - Photos from professional photographers (weddings, etc.)

- Often lower resolution
- Only a small number of photos required
 - One or two forward-facing photos
 - One or two higher-resolution photos

How does resolution affect reconstruction quality?

How does rotation affect reconstruction quality?

Combining high-res rotation with low-res front-facing?

 Virtual U is successful against liveness detection

 Virtual U is successful against liveness detection

Also successful against motion consistency

- "Seeing Your Face is Not Enough: An Inertial Sensor-Based Liveness Detection for Face Authentication" (Li et al., ACM CCS'15)
 - Device motion measured by inertial sensor data
 - Head pose estimated from input video
 - Train a classifier to identify real data (correlated signals) versus spoofed video data

Training Data (Pos. Data vs. Neg. Data)	Test Result (Accept Rate)		
	Real Face	Video Spoof	VR Spoof
Real vs.Video	98.0%	1.3%	97.5%

Training Data	Test Result (Accept Rate)		
(Pos. Data vs. Neg. Data)	Real Face	Video Spoof	VR Spoof
Real vs.Video	98.0%	1.3%	97.5%
Real vs.Video +VR	70.0%	0.0%	50.0%

Training Data	Test Result (Accept Rate)		
(Pos. Data vs. Neg. Data)	Real Face	Video Spoof	VR Spoof
Real vs. Video	98.0%	1.3%	97.5%
Real vs. Video + VR	70.0%	0.0%	50.0%
Real vs.VR	73.7%	-	50.0%

Mitigations

- Alternative/additional hardware
 - Infrared imaging (e.g. Windows Hello)
 - Random structured light projection

image source

Mitigations

Alternative/additional hardware

Infrared imaging (e.g. Windows Hello)

Random structured light projection

Improved defense against low-resolution synthetic textures

Original

Downsized to 50px

Conclusion

- We introduce a new VR-based attack on face authentication systems solely using publicly available photos of the victim
- This attack bypasses existing defenses of liveness detection and motion consistency
- At a minimum, face authentication software must improve against VRbased attacks with low-resolution textures
- The increasing ubiquity of VR will continue to challenge computervision-based authentication systems

Thank you!

Questions?

