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The scenario
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A central repository and two Devs
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Git is a distributed version control system
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Git is a distributed version control system
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Git is a distributed version control system

9

Repo

DevDev

master

Feature
pull!



Git is a distributed version control system
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Git is a distributed version control system
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Git is a distributed version control system
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Git is a distributed version control system
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Git is a distributed version control system
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user

Git repositories can be compromised
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While we were having chips and guacamole...
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Repository compromises happen
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Repository compromises happen

26



Repository compromises happen
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Luckily, we have git’s security features
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Luckily, we have

● Hash chaining
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Luckily, we have

● Hash chaining

● Git commit and tag signatures
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Luckily, we have

● Hash chaining

● Git commit and tag signatures

● Push certificates (more on them later).
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Luckily, we have

● Hash chaining

● Git commit and tag signatures

● Push certificates (more on them later).

● What could go wrong?
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Example
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What happened here?

santiago at ~ ✔:  pip install -e git+https://github.com/santiagotorres/django/@1.9.3#egg=django
Obtaining django from git+https://github.com/santiagotorres/django/@1.9.3#egg=django
[...] 
Successfully installed django
santiago at ~ ✔: django-admin.py --version
1.4.11
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I want to install django 1.9.3



What happened here?

santiago at ~ ✔:  pip install -e git+https://github.com/santiagotorres/django/@1.9.3#egg=django
Obtaining django from git+https://github.com/santiagotorres/django/@1.9.3#egg=django
[...] 
Successfully installed django
santiago at ~ ✔: django-admin.py --version
1.4.11
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But I get django 1.4.11



What happened here?

santiago at ~/django ✗ git verify-tag 1.9.3
warning: Duplicated ref: refs/tags/1.5.11
gpg: Signature made Wed 03 Sep 2014 01:10:58 AM EDT using RSA key ID 2D9266A6808FE067
gpg: Good signature from "James Bennett <james@b-list.org>" [full]
Primary key fingerprint: BD47 7E2E 05F7 EF63 71B6  E8EE 2D92 66A6 808F E067
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I try to verify the tag...



What happened here?

santiago at ~/django ✗ git verify-tag 1.9.3
warning: Duplicated ref: refs/tags/1.5.11
gpg: Signature made Wed 03 Sep 2014 01:10:58 AM EDT using RSA key ID 2D9266A6808FE067
gpg: Good signature from "James Bennett <james@b-list.org>" [full]
Primary key fingerprint: BD47 7E2E 05F7 EF63 71B6  E8EE 2D92 66A6 808F E067
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What happened here?
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santiago at ~/django ✔ git verify-tag --verbose 1.9.3
object [...]
tagger James Bennett <james@b-list.org> 1409721058 -0500
[...]
Tag 1.4.11
gpg: Signature made Wed 03 Sep 2014 01:10:58 AM EDT using RSA key ID 2D9266A6808FE067
gpg: Good signature from "James Bennett <james@b-list.org>" [full]
Primary key fingerprint: BD47 7E2E 05F7 EF63 71B6  E8EE 2D92 66A6 808F E067

I ask for more detail...



What happened here?
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santiago at ~/django ✔ git verify-tag --verbose 1.9.3
object [...]
tagger James Bennett <james@b-list.org> 1409721058 -0500
[...]
Tag 1.4.11
gpg: Signature made Wed 03 Sep 2014 01:10:58 AM EDT using RSA key ID 2D9266A6808FE067
gpg: Good signature from "James Bennett <james@b-list.org>" [full]
Primary key fingerprint: BD47 7E2E 05F7 EF63 71B6  E8EE 2D92 66A6 808F E067

It’s the wrong tag!



What happened here?
● Django 1.4.11 is vulnerable to 8+ RCE vulnerabilities

● But the GPG verification passed?

● Why did this happen?
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The problem
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Why did this happen?
● Simply put, some Git metadata is not signed
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Why did this happen?
● Simply put, some Git metadata is not signed

.git/
├── branches
├── COMMIT_EDITMSG
├── hooks
│   ├── applypatch-msg.sample
….
├── index
├── info
├── logs
│   ├── HEAD
...
├── objects
...
└── refs
...
    └── tags
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Why did this happen?
● Simply put, some Git metadata is not signed

.git/
├── branches
├── COMMIT_EDITMSG
├── hooks
│   ├── applypatch-msg.sample
….
├── index
├── info
├── logs
│   ├── HEAD
...
├── objects
...
└── refs
...
    └── tags

Signed!
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Why did this happen?
● Simply put, some Git metadata is not signed

.git/
├── branches
├── COMMIT_EDITMSG
├── hooks
│   ├── applypatch-msg.sample
….
├── index
├── info
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│   ├── HEAD
...
├── objects
...
└── refs
...
    └── tags
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Why did this happen?
● Simply put, some Git metadata is not signed

.git/
├── branches
├── COMMIT_EDITMSG
├── hooks
│   ├── applypatch-msg.sample
….
├── index
├── info
├── logs
│   ├── HEAD
...
├── objects
...
└── refs
...
    └── tags

Signed!

This is our target
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Why did this happen?
● Simply put, some Git metadata is not signed

○ References, pointers to Git tags and commits, are not signed
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Why did this happen?
● Simply put, some Git metadata is not signed

○ References, pointers to Git tags and commits, are not signed

● An attacker with write access to the repository can modify this information.
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Why did this happen?
● Simply put, some Git metadata is not signed

○ References, pointers to Git tags and commits, are not signed

● An attacker with write access to the repository can modify this information.

● The resulting attack looks like regular git operation.
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Metadata Manipulation Attack 
Taxonomy
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Attack taxonomy
● Teleport Attacks

○ Branch Teleport Attack
○ Tag Teleport Attack

● Rollback Attacks
○ Branch Rollback Attack
○ Global Rollback Attack
○ Effort Duplication Attack

● Deletion Attacks
○ Branch Deletion Attack
○ Tag Deletion Attack 
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Attack taxonomy: summary
● Teleport Attacks

○ Branch Teleport Attack
○ Tag Teleport Attack       

● Rollback Attacks
○ Branch Rollback Attack
○ Global Rollback Attack
○ Effort Duplication Attack

● Deletion Attacks
○ Branch Deletion Attack
○ Tag Deletion Attack 

❖
➢ Buggy code inclusion
➢ Wrong version retrieved     

❖
➢ Critical code omission
➢ Critical code omission
➢ Coding effort increased

❖
➢ Missing branch
➢ Missing tag 
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How can we fix this?
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The problem with existing solutions
● We could solve fork-consistency using existing solutions
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The problem with existing solutions
● We could solve fork-consistency using existing solutions

● Consistency systems, like SUNDR, could solve this issue, but they disregard 
Git’s distributed nature.
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The problem with existing solutions
● We could solve fork-consistency using existing solutions

● Consistency systems, like SUNDR, could solve this issue, but they disregard 
Git’s distributed nature.

● We require a solution that understands which files are meant to be 
synchronized
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Defense assumptions
● Developers communicate through other means

○ A complete fork attack will be noticed and discussed by side-channels

● A repository can be initialized with a root of trust
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Our Solution
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Defense goals: usability
● Preserve current Git workflows

● Ensure backwards compatibility with older Git versions

● Provide increased security in partial adoption scenarios
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Defense goals: security
● Prevent modification of committed data 

● Ensure consistent repository state 

● Ensure repository state freshness
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Defense: Overview
➔ Provided by Git

➔ Reference State Log

➔ Nonce Bag

● Prevent modification of committed data

● Ensure consistent repository state 

● Ensure repository state freshness
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Defense: Overview
➔ Provided by Git

➔ Reference State Log

➔ Nonce Bag

● Prevent modification of committed data

● Ensure consistent repository state 

● Ensure repository state freshness
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The Reference State Log
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The Reference State Log
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The Reference State Log
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The Reference State Log
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The Reference State Log
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The Reference State Log
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The Reference State Log
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The RSL push entry
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Entry
Entry

...
Entry

Branch: master

HEAD: 0xfe….ab

PREV_HASH: 0xac...89

Signature: Dev’s signature

...

...

...

...



The RSL push entry
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...

...

...

...

Branch: master

HEAD: 0xfe….ab

PREV_HASH: 0xac...89

Signature: Dev’s signature

...

...

...

...

➢ references changed
➢ their updated locations
➢ hash of previous RSL entry
➢ authenticates whoever added this entry



❖  
➢ Add an RSL entry and push
➢ fetch, retrieve RSL, and verify 

repository state

Implementation: prototype

● Two extensions to git
○ git securepush
○ git securefetch

● RSL lives in repo
○ as a special branch
○ sent in-band
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Synchronization
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Synchronization
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Synchronization

94

Repo

DevDev

secure
push! Feature

master



Synchronization
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Synchronization
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Synchronization
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Synchronization
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Verification
1. Is the entry signed by a trusted party?

2. Are all the entries in the RSL correctly linked together?

3. Are all the references pointing to the right place?
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Evaluation
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How are attacks prevented
● Teleport Attacks

○ Branch Teleport Attack
○ Tag Teleport Attack

● Rollback Attacks
○ Branch Rollback Attack
○ Global Rollback Attack
○ Effort Duplication Attack

● Deletion Attacks
○ Branch Deletion Attack
○ Tag Deletion Attack 
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How are attacks prevented
● Teleport Attacks

○ Branch Teleport Attack
○ Tag Teleport Attack

● Rollback Attacks
○ Branch Rollback Attack
○ Global Rollback Attack
○ Effort Duplication Attack

● Deletion Attacks
○ Branch Deletion Attack
○ Tag Deletion Attack 
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➔ Requires RSL entry with target: 
◆ commit
◆ tag

➔ Requires replaying RSL entry
◆ Target commit must have been pushed
◆ (prevented with Nonce Bag)
◆ (Prevented with Nonce Bag)

➔ Requires valid RSL entry
◆



RSL + Nonce Bag VS other mechanisms
Feature Commit signing Push Certificate RSL

Commit Tampering ✓ ✓ ✓

Branch Teleport X ✓ ✓

Branch Rollback X X ✓

Global Rollback X X ✓

Effort Duplication X X ✓

Tag Rollback X ✓ ✓

Minimum Git Version 1.7.9 2.2.0 1.7.9

Distribution Mechanism in-band (no default) in-band 103



Partial adoption of our defense

Possible Attacks Time window of attack Vulnerable commit objects

Commit signing All attacks Any time Any object

RSL (full adoption) No attacks None No object

RSL (partial adoption) All attacks After latest RSL and before 
the next RSL entry

Objects added after the latest 
RSL entry
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Storage overhead

Repository No. of commits Number of pushes Repository size
(MB)

Storage Overhead

Bootstrap 11,666 1,345 78.85 .4%

Angular.js 7,521 26 66.96 .009%

D3 3,510 255 32.91 .17%

jQuery 6,031 194 15.79 .22%

oh-my-zsh 3,841 1,170 3.52 6.5%
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Network overhead
1. Additional ~25KB per push/fetch (less than 1% in some cases)

106



Network overhead
1. Additional ~25KB per push/fetch (less than 1% in some cases)

  

2. Double round trip time
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Network overhead
1. Additional ~25KB per push/fetch (less than 1% in some cases)

  

2. Double round trip time

3. These issues go away when RSL becomes part Git’s pack protocol
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Turning Theory Into Practice
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Interaction with the Git community
1. Refactored Git tag PGP verification code
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Interaction with the Git community
1. Refactored Git tag PGP verification code

○ Yes, you are running our code starting on 2.9.0
○ 6 patches, over 8 iterations
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Interaction with the Git community
1. Refactored Git tag PGP verification code 

2. Discussed a plan for the git-tag issue 
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Interaction with the Git community
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Interaction with the Git community
1. Refactored Git tag PGP verification code

2. Discussed a plan for the git-tag issue 

3. Discussed the plan to address the rest
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Other version control systems
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System Signed revisions (commits) prevents MM attacks

Git Yes No

Bitkeeper No No 

Mercurial Yes (via plugin) Yes

Monotone Yes (mandatory) Yes



Conclusions
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To wrap up
1. Do not trust the infrastructure
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To wrap up
1. Do not trust the infrastructure

2. GPG signatures on git objects is currently not enough...
○ ...but do it anyway!
○ Do not use references, but the object’s SHA1 when possible
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To wrap up
1. Do not trust the infrastructure

2. GPG signatures on git objects is currently not enough...
○ ...but do it anyway!
○ Do not use references, but the object’s SHA1 when possible

3. Update Git!
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Thanks
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