DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, Stefan Mangard
IAIK, Graz University of Technology, Austria

Usenix Security 2016, August 11
Setting – Cloud Servers

- Multi-CPU (multi-socket) systems
- Multiple tenants
 - separate VMs
 - dedicated CPUs → no shared cache
- No shared memory
 - no cross-VM memory deduplication

- Previously
 - slow covert channel (< 1 kbps)
 - no side channel
Overview

- Cross-CPU attacks using **DRAM addressing** (**DRAMA**)
 - fast covert channel (up to 2 Mbps)
 - first side-channel attack
- Reverse-engineered DRAM addressing
 - two approaches
- Improving existing attacks
DRAM Organization

Hierarchy of

- CPUs
DRAM Organization

Hierarchy of
- CPUs
- Channels
- DIMMs
DRAM Organization

Hierarchy of
- CPUs
- Channels
- DIMMs
- Ranks
- Banks
DRAM Banks

- Memory array
 - rows of columns
- Row Buffer
 - buffers one entire row (8 KB)
The Row Buffer

- Behavior similar to a cache
 - row hits \rightarrow fast access
 - row conflicts \rightarrow slow access
Reverse Engineering

of DRAM Addressing
Reverse-Engineering DRAM Addressing

- Mapping to banks using physical-address bits
- „Complex“ addressing functions
 - distribute traffic to channels/banks
 - undisclosed (Intel)

- Two approaches to reverse engineer
- Presumption: linear functions (XORs)
Approach 1: Probing the Memory Bus

- Probing of control signals
 - CS, BA, ...
 - measure voltage with Osci.
 - recover logic value

- Repeated access to address
 - until value is determined

- Function reconstruction
 - linear algebra over bits
Approach 2: Fully Automated SW-based

- Exploit timing differences
- Measuring phase
 - build sets of same-bank addresses
 - alternating access to two addresses
 - measure avg. access time
- Reconstruction phase
 - exhaustive search over linear functions with up to n set coefficients
- Total time: seconds
Comparison

- **Probing**
 - recover function labels
 - find a ground truth
 - equipment and access to internals of machine

- **SW-based**
 - fully automated
 - ability to run remotely, sandboxed, and on mobile devices
Some Results - Desktop

Intel Haswell (desktop system) – DDR3
Some Results – Server System

Dual-CPU Intel Haswell-EP – DDR4
Some Results – Mobile

Samsung Exynos 7420 (Galaxy S6) – LPDDR4
Cross-CPU Attacks

…and how it continues with Romeo and Juliet
High-speed covert channel
Concept

- Occupy different rows in the same bank

- Sender
 - send 1: continuously access row
 - send 0: don’t do anything

- Receiver
 - access row and measure avg. time
 - infer sent bits based on time
Implementation

- Each bank is a channel
 - use up to 8 banks in parallel
 - multithreading

- Performance:
 - desktop: 2.1 Mbps
 - multi-CPU server: 1.2 Mbps

![Graph showing Bit Error Probability vs Raw Bitrate for Intel Haswell (desktop system)]
Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>Performance</th>
<th>Cross-CPU</th>
<th>No Shared Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>2.1 Mbps</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Prime+Probe [2]</td>
<td>536 Kbps</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Flush+Reload [2]</td>
<td>2.3 Mbps</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Flush+Flush [2]</td>
<td>3.8 Mbps</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Memory Bus Contention [3]</td>
<td>746 bps</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Deduplication [4]</td>
<td>90 bps</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Low-noise side-channel attack
Spying on Memory Accesses

- Memory in the same row/bank
 - row size 8 KB / page size 4 KB

- Spy activates conflict row
- Victim computes and possibly accesses shared row
- Spy accesses shared row
 - fast → row hit → victim access
Example

Keystrokes in Firefox address bar
Implementation

- high spatial accuracy (down to 512 B)
- very low number of false positives
 - monitor single events

- Finding addresses: template attack [1]
 - automatic location of vulnerable addresses
 - scan large fraction of memory (4 KB pages)
Countermeasures to DRAMA

- Restrictions of
 - `rdtsc`
 - `clflush`

- Multi-CPU: separating DRAM for tenants
 - only access to CPU-local memory
 - degradation into single-CPU system

- Detection via high number of cache misses / row conflicts
Improving Attacks - Rowhammer

- **Rowhammer**
 - inducing bit flips in DRAM
 - by quickly switching rows
 - requires addressing functions

- First documented bit flips on DDR4
The End

... of Romeo and Juliet
Source code for reverse-engineering tool and side-channel attack at

https://github.com/IAIK/drama
DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, Stefan Mangard
IAIK, Graz University of Technology, Austria

Usenix Security 2016, August 11
Bibliography

