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TLDR

powerful cache attacks (like Flush+Reload) on x86

why not on ARM?

We identified and solved challenges systematically to:

make all cache attack techniques applicable to ARM

monitor user activity

attack weak Android crypto

show that ARM TrustZone leaks through the cache
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What is a cache attack? (1)
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What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

Cache attack techniques

Most important techniques:

Flush+Reload

Prime+Probe

Both work on the last-level cache → across cores
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Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

slow access

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Caches on Intel CPUs
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Caches on ARM Cortex-A CPUs
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Modern ARM SoCs

big.LITTLE architecture (A53 + A57)

→ multiple CPUs with no shared cache

Challenge #2: no shared cache
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Cache maintenance

Instructions to enforce memory coherency

x86: unprivileged clflush

until ARMv7-A: n/a

ARMv8-A: kernel can unlock a flush instruction for userspace

Challenge #3: no flush instruction
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Cache eviction

targeted cache eviction on ARM can be complicated:

existing approaches introduce much noise
pseudo-random replacement policy
unclear how randomness affects existing approaches

Challenge #4: perform fast & reliable cache eviction
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Timing measurements

x86: rdtsc provides unprivileged access to cycle count

ARM: existing attacks require access to privileged mode cycle counter

Challenge #5: find unprivileged highly accurate timing sources
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Challenges

#1: non-inclusive caches

#2: no shared cache

#3: no flush

#4: random eviction

#5: no unprivileged timing
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Solving #1: non-inclusive caches

Attacking instruction-inclusive data-non-inclusive caches
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Solving #1: non-inclusive caches

What about entirely non-inclusive caches?

cache coherency protocol

fetches data from remote cores instead of DRAM

→ remote cache hits
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Solving #1: non-inclusive caches
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Solving #2: no shared cache

Multiple CPUs with no shared cache

again: cache coherency protocol

fetches data from remote CPUs instead of DRAM

keep local L2 filled to increase probability of remote L1/L2 eviction

timing difference between local and remote still small enough
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Solving #3: no flush

idea: replace flush instruction with cache eviction

Flush+Reload→ Evict+Reload

(works on x86)

but: cache eviction is slow and can be unreliable

unless you know how to evict

central idea of our Rowhammer.js paper
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Solving #4: random eviction

unique addr. # accesses Cycles Eviction rate

48 48 6 517 70.8%
800 800 142 876 99.1%

23 50 6 209 100.0%
22 102 5 101 100.0%
21 96 4 275 99.9%

(on the Alcatel One Touch Pop 2)
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Solving #5: no unprivileged timing

Comparison of 4 different measurement techniques

performance counter (privileged)

perf event open (syscall, unprivileged)

clock gettime (unprivileged)

thread counter (multithreaded, unprivileged)
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Solving #5: no unprivileged timing
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Flush+Flush on the Samsung Galaxy S6
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Prime+Probe on the Alcatel One Touch Pop 2
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Covert channels on Android

Work Type Bandwidth [bps] Error rate

Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1 140 650 1.10%
Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257 509 1.83%
Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178 292 0.48%
Ours (Alcatel One Touch Pop 2) Evict+Reload, cross-core 13 618 3.79%
Ours (OnePlus One) Evict+Reload, cross-core 12 537 5.00%
Marforio et al. Type of Intents 4 300 –
Marforio et al. UNIX socket discovery 2 600 –
Schlegel et al. File locks 685 –
Schlegel et al. Volume settings 150 –
Schlegel et al. Vibration settings 87 –
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Cache template attacks (CTA)
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Cache template attacks (CTA)
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CTA: taps and swipes
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CTA: taps and swipes
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CTA: taps and swipes
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CTA: distinguishing keys
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Bouncy Castle

a widely used crypto library

WhatsApp, ...

uses a T-table implementation
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Attacking Bouncy Castle
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Attacking Bouncy Castle with Prime+Probe (Alcatel)
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Leakage from ARM TrustZone (RSA signatures)
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Conclusions

all the powerful cache attacks applicable to smartphones

monitor user activity with high accuracy

derive crypto keys

ARM TrustZone leaks through the cache
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