www.iaik.tugraz.at m

ARMageddon:
Cache Attacks on Mobile Devices

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, Stefan Mangard
Graz University of Technology

August 11, 2016 — Usenix Security 2016

1 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

TLDR

= powerful cache attacks (like Flush+Reload) on x86
= why not on ARM?

> Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

TLDR

= powerful cache attacks (like Flush+Reload) on x86
= why not on ARM?

We identified and solved challenges systematically to:

make all cache attack techniques applicable to ARM

monitor user activity

attack weak Android crypto

show that ARM TrustZone leaks through the cache

> Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

What is a cache attack? (1)

0 cache hits [0 cache misses

2 e

50 100 150 200 250 300 350 400
Access time in CPU cycles

3 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

What is a cache attack? (2)

dgruss@ta2odg: ~

rch Terminal Help

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

What is a cache attack? (2)

dgruss@ta2odg: ~

rch Terminal Help

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

What is a cache attack? (2)

dgruss@ta2odg: ~

rch Terminal Help

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

What is a cache attack? (2)

dgruss@ta2odg: ~

rch Terminal Help

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

What is a cache attack? (2)

dgruss@ta2odg: ~

rch Terminal Help

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

What is a cache attack? (2)

dgruss@ta2odg: ~

rch Terminal Help

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

What is a cache attack? (2)

dgruss@ta2odg: ~

rch Terminal Help

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Cache attack techniques

Most important techniques:

= Flush+Reload
= Prime+Probe

Both work on the last-level cache — across cores

5 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Flush+Reload

Attacker Victim
address space Cache address space

step 0: attacker maps shared library — shared memory, shared in cache

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Flush+Reload

Attacker Victim
address space Cache address space

Cached cached

Ve

step 0: attacker maps shared library — shared memory, shared in cache

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Flush+Reload

Attacker
address space

Cache

flushes

Victim
address space

step 0: attacker maps shared library — shared memory, shared in cache

step 1: attacker flushes the shared line

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

www.iaik.tugraz.at m

Flush+Reload

Attacker Victim
address space Cache address space

loads data

step 0: attacker maps shared library — shared memory, shared in cache
step 1: attacker flushes the shared line
step 2: victim loads data while performing encryption

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Flush+Reload

Attacker Victim
address space Cache address space

reloads datg

step 0: attacker maps shared library — shared memory, shared in cache
step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

step 3: attacker reloads data — fast access if the victim loaded the line

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

step 0: attacker fills the cache (prime)

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

step 0: attacker fills the cache (prime)

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

step 0: attacker fills the cache (prime)

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

loads data

/

—

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

loads data

/

—

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

loads data

/

—

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

loads data

/

—

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

-~
>
0
&
[

—

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Prime+Probe

Attacker Victim
address space Cache address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Caches on Intel CPUs

core 0

core 1

core 2

core 3

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

last-level cache (L3):

= shared
= inclusive

= shared memory is shared in
cache, across cores!

www.iaik.tugraz.at m

Caches on ARM Cortex-A CPUs

core 0

core 1

core 2

core 3

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

last-level cache (L2):

= shared
= put not inclusive

= shared memory not in L2 is
not shared in cache

www.iaik.tugraz.at m

Caches on ARM Cortex-A CPUs

core 0

core 1

core 2

core 3

last-level cache (L2):

= shared
= put not inclusive

= shared memory not in L2 is
not shared in cache

Challenge #1: non-inclusive caches

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Modern ARM SoCs

= big.LITTLE architecture (A53 + A57)
— multiple CPUs with no shared cache

10 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Modern ARM SoCs

= big.LITTLE architecture (A53 + A57)
— multiple CPUs with no shared cache

Challenge #2: no shared cache

10 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Cache maintenance

Instructions to enforce memory coherency

= x86: unprivileged c1flush
= until ARMv7-A: n/a
= ARMv8-A: kernel can unlock a flush instruction for userspace

11 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Cache maintenance

Instructions to enforce memory coherency

= x86: unprivileged c1flush
= until ARMv7-A: n/a
= ARMv8-A: kernel can unlock a flush instruction for userspace

Challenge #3: no flush instruction

11 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Cache eviction

= targeted cache eviction on ARM can be complicated:

= existing approaches introduce much noise
= pseudo-random replacement policy
= unclear how randomness affects existing approaches

12 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Cache eviction

= targeted cache eviction on ARM can be complicated:

= existing approaches introduce much noise
= pseudo-random replacement policy
= unclear how randomness affects existing approaches

Challenge #4: perform fast & reliable cache eviction

12 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Timing measurements

= x86: rdtsc provides unprivileged access to cycle count
= ARM: existing attacks require access to privileged mode cycle counter

13 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Timing measurements

= x86: rdtsc provides unprivileged access to cycle count
= ARM: existing attacks require access to privileged mode cycle counter

Challenge #5: find unprivileged highly accurate timing sources

13 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Challenges

#1:
#2:
#3:
#4.
#5:

non-inclusive caches
no shared cache

no flush

random eviction

no unprivileged timing

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

www.iaik.tugraz.at m

Solving #1: non-inclusive caches

15 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Solving #1: non-inclusive caches

Attacking instruction-inclusive data-non-inclusive caches

15 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Solving #1: non-inclusive caches

Attacking instruction-inclusive data-non-inclusive caches

Core 0

Core 1

L1l

L1D L1l

L1D

Sets

m—

Sets

L2 Unified Cache

Daniel Gruss, Graz University of Technology

August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

www.iaik.tugraz.at m

Solving #1: non-inclusive caches

What about entirely non-inclusive caches?

= cache coherency protocol
= fetches data from remote cores instead of DRAM
— remote cache hits

16 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Solving #1: non-inclusive caches

What about entirely non-inclusive caches?

Sets

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Core 0

Core 1

L1l

L1D

L1l

L1D

Sets

L2 Unified Cache

www.iaik.tugraz.at m

www.iaik.tugraz.at m

Solving #1: non-inclusive caches

104
T T T

” 3 —— Hit (same core) —— Hit (cross-core) | |
Q --- Miss (same core) - - - Miss (cross-core)
3
g 2 i
©
@ h
e} h
IS 1 | h
>
2z

L

O | AN |
0 100 200 300 400 500 600 70 800 900 1,000
Measured access time in CPU cycles (OnePlus One)

18 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Solving #2: no shared cache

Multiple CPUs with no shared cache

19 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Solving #2: no shared cache

Multiple CPUs with no shared cache

= again: cache coherency protocol

= fetches data from remote CPUs instead of DRAM

= keep local L2 filled to increase probability of remote L1/L2 eviction
= timing difference between local and remote still small enough

19 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Solving #3: no flush

= idea: replace flush instruction with cache eviction

» Flush+Reload — Evict+Reload

20 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Solving #3: no flush

= idea: replace flush instruction with cache eviction

= Flush+Reload — Evict+Reload (works on x86)

20 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Solving #3: no flush

= idea: replace flush instruction with cache eviction
= Flush+Reload — Evict+Reload (works on x86)

= but: cache eviction is slow and can be unreliable

20 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Solving #3: no flush

= idea: replace flush instruction with cache eviction
= Flush+Reload — Evict+Reload (works on x86)

= but: cache eviction is slow and can be unreliable
= unless you know how to evict

20 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Solving #3: no flush

= idea: replace flush instruction with cache eviction
= Flush+Reload — Evict+Reload (works on x86)

= but: cache eviction is slow and can be unreliable
= unless you know how to evict

= central idea of our Rowhammer.js paper

20 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Solving #4: random eviction

unique addr. # accesses Cycles Eviction rate

48 48 6517
800 800 142876
23 50 6209
22 102 5101
21 96 4275

70.8%
99.1%
100.0%
100.0%
99.9%

(on the Alcatel One Touch Pop 2)

o1 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

www.iaik.tugraz.at m
Solving #5: no unprivileged timing
Comparison of 4 different measurement techniques

= performance counter (privileged)

= perf_event _open (Syscall, unprivileged)

» clock_gettime (unprivileged)

= thread counter (multithreaded, unprivileged)

o0 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Solving #5: no unprivileged timing

—— Hit (PMCCNTR) —— Hit (clock_gettimex.15)
-+- Miss (PMCCNTR)-+- Miss (clock_gettimex.15)
—=— Hit (syscallx.25) —— Hit (counter threadx.05)

104 -=- Miss (syscallx.25) - +- Miss (counter threadx.05)

r il I [[
\

| o
‘\

i
I i | N om
| v L
L i N I 1 At 4
1 \ oo [AW
J . o AR
N ! Iy / [N
| & 1 | 1L L \ —e- x Ig®

O0 10 20 30 40 ‘50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Measured access time (scaled)

Number of accesses

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Flush+Flush on the Samsung Galaxy S6

104
T T T T
" 3r —— Flush (address cached) ;‘. 1
3 - - - Flush (address not cached) .
S ol " i
o K |I
o] o
E 11 L .
z .
o ul | 1 | 1 | 1 | ,‘ \‘ |
0 50 100 150 200 250 300 350 400 450 500 550 600

Measured execution time in CPU cycles

o4 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Prime+Probe on the Alcatel One Touch Pop 2

www.iaik.tugraz.at m

40% ‘ ‘ ‘
| —— Victim access

30% " ----No victim access |
wn v' \\
(] [
% 200/0]
O

10% N

/ ‘\' 4 . M
0% : :

| | | 1 | |
1,800 2,000 2,200 2,400 2,600 2,800

3,000 3,200 3,400

Execution time in CPU cycles

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Covert channels on Android

www.iaik.tugraz.at m

Work Type Bandwidth [bps] Error rate
Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1140650 1.10%
Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257509 1.83%
Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178292 0.48%
Ours (Alcatel One Touch Pop 2) Evict+Reload, cross-core 13618 3.79%
Ours (OnePlus One) Evict+Reload, cross-core 12537 5.00%
Marforio et al. Type of Intents 4300 -
Marforio et al. UNIX socket discovery 2600 -
Schlegel et al. File locks 685 -
Schlegel et al. Volume settings 150 -
Schlegel et al. Vibration settings 87 -

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Cache template attacks (CTA)
key EEENEETE
]]

Elongpress ||
L swipe H L |
3 tap B
text HERTE
CO00000000000DD O
FTOROXOIFFTONOIFDNOIF D
DO NETOHAHDDODIDHD DO D
M X O D~ 00 00 00 00 00 0 0 OO ™ v
SO R KK KR RRRERRAAA
SSSSSSSSSS K KX K
S8 S
Addresses

Cache template matrix for 1ibinput.so
(on an Alcatel One Touch Pop 2)

o7 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Cache template attacks (CTA)

alphabet ..7
enter ..
space ..
backspace ..

Input

=4 (=]
Q <
<t 28]
Q ©
0 ©
» X
S (=)

0x45140
0x56940
0x57280
0x60280
0x60340
0x60580
0x66380

Addresses

Cache template matrix for the default AOSP keyboard
(on a Samsung Galaxy S6)

28 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

CTA: taps and swipes

www.iaik.tugraz.at m

200 + .
W Wy
2 150 |- 1
»
[2]
8 100 |- 1
(&)
<
50 + Tap Tap Tap Swipe Swipe Swipe Tap Tap Tap Swipe Swipe |
\ \ \ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16 18

Time in seconds

measured on an Alcatel One Touch Pop 2

29 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

CTA: taps and swipes

400 ’

Tap Tap Tap Swipe Swipe Swipe

200 ~ .

Access time

0 1 2 3 4 5 6 7 8 9
Time in seconds

measured on a Samsung Galaxy S6

30 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

CTA: taps and swipes

800
£ 600
2
9 400
(&]
<
200
Tap Tap Tap Swipe Swipe Swipe
| | | | | | |
0 1 2 3 4 5 6 7

Time in seconds

measured on measured on a OnePlus One

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

CTA: distinguishing keys

www.iaik.tugraz.at m

— Key
300 « Space ||
(0] R . 3
£ 3
B 200 ¥ MR DI TSR R
(0]
Q
(&)
<C
100 t h i s Space i s Space a Spce m a g e
| | | | |
0 1 2 3 4 5 7

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Time in seconds

www.iaik.tugraz.at m

Bouncy Castle

= a widely used crypto library
= WhatsApp, ...

= uses a T-table implementation

33 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

Attacking Bouncy Castle

Address

. —

Uil
I I

|
2283538282323 33¢8
NNNNNNNNNNaaaa%x
COOCOCOOCOOOOCococoOoaOoO

Plaintext byte values

Address

www.iaik.tugraz.at m

Evict+Reload (Alcatel) vs. Flush+Reload (Samsung)

34 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Attacking Bouncy Castle with Prime+Probe (Alcatel)

ox240 [
0x280 B

5 0x2C0 B
& 0x300 B
O 0x340
0x380 B
0x3C0 B
S ESRTIBIICSIIIRSCARRRE
EEEEEEEREEIERREE
Plaintext byte values

35 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Leakage from ARM TrustZone (RSA signatures)

108
[%2] T T
o 157 : 3
e Valid key 1
> .
O --- Valid key 2
E 1L --- Valid key 3 ||
(&) — Invalid key
£
()] ’\\
g 05 | !1’\\\
g , ;I '\\ IL‘\» N l\\ ,'\
5 A L[4 A \/ f \’/“//\/\‘ o\)
o 0 Fo oz NL 27 o Ay Moo ARPAVESRE AN WY R VANSEATIR S/ AR W N PG A]
o | | | |

| | | | |
250 260 270 280 290 300 310 320 330 340 350
Set number

36 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

Conclusions

= all the powerful cache attacks applicable to smartphones
= monitor user activity with high accuracy

= derive crypto keys

= ARM TrustZone leaks through the cache

37 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

www.iaik.tugraz.at m

ARMageddon:
Cache Attacks on Mobile Devices

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, Stefan Mangard
Graz University of Technology

August 11, 2016 — Usenix Security 2016

38 Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 2016

	Background
	Challenges
	Solving challenges
	Results

