
www.iaik.tugraz.at

ARMageddon:
Cache Attacks on Mobile Devices

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, Stefan Mangard
Graz University of Technology

August 11, 2016 — Usenix Security 2016

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20161



www.iaik.tugraz.at

TLDR

powerful cache attacks (like Flush+Reload) on x86

why not on ARM?

We identified and solved challenges systematically to:

make all cache attack techniques applicable to ARM

monitor user activity

attack weak Android crypto

show that ARM TrustZone leaks through the cache

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20162



www.iaik.tugraz.at

TLDR

powerful cache attacks (like Flush+Reload) on x86

why not on ARM?

We identified and solved challenges systematically to:

make all cache attack techniques applicable to ARM

monitor user activity

attack weak Android crypto

show that ARM TrustZone leaks through the cache

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20162



www.iaik.tugraz.at

What is a cache attack? (1)

50 100 150 200 250 300 350 400

101

103

105

107

Access time in CPU cycles

N
um

be
ro

fa
cc

es
se

s

cache hits cache misses

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20163



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

What is a cache attack? (2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20164



www.iaik.tugraz.at

Cache attack techniques

Most important techniques:

Flush+Reload

Prime+Probe

Both work on the last-level cache → across cores

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20165



www.iaik.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20166



www.iaik.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

cached cached

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20166



www.iaik.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line

flushes

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20166



www.iaik.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line
step 2: victim loads data while performing encryption

loads data

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20166



www.iaik.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line
step 2: victim loads data while performing encryption
step 3: attacker reloads data→ fast access if the victim loaded the line

reloads data

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20166



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

loads data

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

loads data

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

loads data

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

loads data

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

fast access

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

slow access

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20167



www.iaik.tugraz.at

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2

L3
slice 0

L3
slice 1

L3
slice 2

L3
slice 3

last-level cache (L3):

shared

inclusive

= shared memory is shared in
cache, across cores!

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20168



www.iaik.tugraz.at

Caches on ARM Cortex-A CPUs

core 0

L1

L2

core 1

L1

core 2

L1

core 3

L1

last-level cache (L2):

shared

but not inclusive

= shared memory not in L2 is
not shared in cache

Challenge #1: non-inclusive caches

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20169



www.iaik.tugraz.at

Caches on ARM Cortex-A CPUs

core 0

L1

L2

core 1

L1

core 2

L1

core 3

L1

last-level cache (L2):

shared

but not inclusive

= shared memory not in L2 is
not shared in cache

Challenge #1: non-inclusive caches

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 20169



www.iaik.tugraz.at

Modern ARM SoCs

big.LITTLE architecture (A53 + A57)

→ multiple CPUs with no shared cache

Challenge #2: no shared cache

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201610



www.iaik.tugraz.at

Modern ARM SoCs

big.LITTLE architecture (A53 + A57)

→ multiple CPUs with no shared cache

Challenge #2: no shared cache

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201610



www.iaik.tugraz.at

Cache maintenance

Instructions to enforce memory coherency

x86: unprivileged clflush

until ARMv7-A: n/a

ARMv8-A: kernel can unlock a flush instruction for userspace

Challenge #3: no flush instruction

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201611



www.iaik.tugraz.at

Cache maintenance

Instructions to enforce memory coherency

x86: unprivileged clflush

until ARMv7-A: n/a

ARMv8-A: kernel can unlock a flush instruction for userspace

Challenge #3: no flush instruction

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201611



www.iaik.tugraz.at

Cache eviction

targeted cache eviction on ARM can be complicated:

existing approaches introduce much noise
pseudo-random replacement policy
unclear how randomness affects existing approaches

Challenge #4: perform fast & reliable cache eviction

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201612



www.iaik.tugraz.at

Cache eviction

targeted cache eviction on ARM can be complicated:

existing approaches introduce much noise
pseudo-random replacement policy
unclear how randomness affects existing approaches

Challenge #4: perform fast & reliable cache eviction

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201612



www.iaik.tugraz.at

Timing measurements

x86: rdtsc provides unprivileged access to cycle count

ARM: existing attacks require access to privileged mode cycle counter

Challenge #5: find unprivileged highly accurate timing sources

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201613



www.iaik.tugraz.at

Timing measurements

x86: rdtsc provides unprivileged access to cycle count

ARM: existing attacks require access to privileged mode cycle counter

Challenge #5: find unprivileged highly accurate timing sources

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201613



www.iaik.tugraz.at

Challenges

#1: non-inclusive caches

#2: no shared cache

#3: no flush

#4: random eviction

#5: no unprivileged timing

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201614



www.iaik.tugraz.at

Solving #1: non-inclusive caches

Attacking instruction-inclusive data-non-inclusive caches

Core 0

L1I

S
et

s

L1D

Core 1

L1I L1D

L2 Unified Cache

S
et

s

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201615



www.iaik.tugraz.at

Solving #1: non-inclusive caches

Attacking instruction-inclusive data-non-inclusive caches

Core 0

L1I

S
et

s

L1D

Core 1

L1I L1D

L2 Unified Cache

S
et

s

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201615



www.iaik.tugraz.at

Solving #1: non-inclusive caches

Attacking instruction-inclusive data-non-inclusive caches

Core 0

L1I
S

et
s

L1D

Core 1

L1I L1D

L2 Unified Cache

S
et

s

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201615



www.iaik.tugraz.at

Solving #1: non-inclusive caches

What about entirely non-inclusive caches?

cache coherency protocol

fetches data from remote cores instead of DRAM

→ remote cache hits

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201616



www.iaik.tugraz.at

Solving #1: non-inclusive caches

What about entirely non-inclusive caches?

Core 0

L1I

S
et

s

L1D

Core 1

L1I L1D

L2 Unified Cache
S

et
s

evict to DRAM

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201617



www.iaik.tugraz.at

Solving #1: non-inclusive caches

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3

·104

Measured access time in CPU cycles (OnePlus One)

N
um

be
ro

fa
cc

es
se

s Hit (same core) Hit (cross-core)
Miss (same core) Miss (cross-core)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201618



www.iaik.tugraz.at

Solving #2: no shared cache

Multiple CPUs with no shared cache

again: cache coherency protocol

fetches data from remote CPUs instead of DRAM

keep local L2 filled to increase probability of remote L1/L2 eviction

timing difference between local and remote still small enough

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201619



www.iaik.tugraz.at

Solving #2: no shared cache

Multiple CPUs with no shared cache

again: cache coherency protocol

fetches data from remote CPUs instead of DRAM

keep local L2 filled to increase probability of remote L1/L2 eviction

timing difference between local and remote still small enough

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201619



www.iaik.tugraz.at

Solving #3: no flush

idea: replace flush instruction with cache eviction

Flush+Reload→ Evict+Reload

(works on x86)

but: cache eviction is slow and can be unreliable

unless you know how to evict

central idea of our Rowhammer.js paper

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201620



www.iaik.tugraz.at

Solving #3: no flush

idea: replace flush instruction with cache eviction

Flush+Reload→ Evict+Reload (works on x86)

but: cache eviction is slow and can be unreliable

unless you know how to evict

central idea of our Rowhammer.js paper

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201620



www.iaik.tugraz.at

Solving #3: no flush

idea: replace flush instruction with cache eviction

Flush+Reload→ Evict+Reload (works on x86)

but: cache eviction is slow and can be unreliable

unless you know how to evict

central idea of our Rowhammer.js paper

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201620



www.iaik.tugraz.at

Solving #3: no flush

idea: replace flush instruction with cache eviction

Flush+Reload→ Evict+Reload (works on x86)

but: cache eviction is slow and can be unreliable

unless you know how to evict

central idea of our Rowhammer.js paper

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201620



www.iaik.tugraz.at

Solving #3: no flush

idea: replace flush instruction with cache eviction

Flush+Reload→ Evict+Reload (works on x86)

but: cache eviction is slow and can be unreliable

unless you know how to evict

central idea of our Rowhammer.js paper

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201620



www.iaik.tugraz.at

Solving #4: random eviction

unique addr. # accesses Cycles Eviction rate

48 48 6 517 70.8%
800 800 142 876 99.1%

23 50 6 209 100.0%
22 102 5 101 100.0%
21 96 4 275 99.9%

(on the Alcatel One Touch Pop 2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201621



www.iaik.tugraz.at

Solving #5: no unprivileged timing

Comparison of 4 different measurement techniques

performance counter (privileged)

perf event open (syscall, unprivileged)

clock gettime (unprivileged)

thread counter (multithreaded, unprivileged)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201622



www.iaik.tugraz.at

Solving #5: no unprivileged timing

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

1

2

3

4

5

·104

Measured access time (scaled)

N
um

be
ro

fa
cc

es
se

s

Hit (PMCCNTR) Hit (clock gettime×.15)
Miss (PMCCNTR) Miss (clock gettime×.15)
Hit (syscall×.25) Hit (counter thread×.05)

Miss (syscall×.25) Miss (counter thread×.05)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201623



www.iaik.tugraz.at

Flush+Flush on the Samsung Galaxy S6

0 50 100 150 200 250 300 350 400 450 500 550 600
0

1

2

3

·104

Measured execution time in CPU cycles

N
um

be
ro

fc
as

es

Flush (address cached)
Flush (address not cached)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201624



www.iaik.tugraz.at

Prime+Probe on the Alcatel One Touch Pop 2

1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,400
0%

10%

20%

30%

40%

Execution time in CPU cycles

C
as

es

Victim access
No victim access

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201625



www.iaik.tugraz.at

Covert channels on Android

Work Type Bandwidth [bps] Error rate

Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1 140 650 1.10%
Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257 509 1.83%
Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178 292 0.48%
Ours (Alcatel One Touch Pop 2) Evict+Reload, cross-core 13 618 3.79%
Ours (OnePlus One) Evict+Reload, cross-core 12 537 5.00%
Marforio et al. Type of Intents 4 300 –
Marforio et al. UNIX socket discovery 2 600 –
Schlegel et al. File locks 685 –
Schlegel et al. Volume settings 150 –
Schlegel et al. Vibration settings 87 –

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201626



www.iaik.tugraz.at

Cache template attacks (CTA)

0x
84

0
0x

88
0

0x
32

80
0x

77
00

0x
80

80
0x

81
00

0x
81

40
0x

88
40

0x
88

80
0x

89
00

0x
89

40
0x

89
80

0x
11

00
0

0x
11

04
0

0x
11

08
0

Addresses

text
tap

swipe
longpress

key

E
ve

nt

Cache template matrix for libinput.so
(on an Alcatel One Touch Pop 2)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201627



www.iaik.tugraz.at

Cache template attacks (CTA)

0x
45

14
0

0x
56

94
0

0x
57

28
0

0x
58

48
0

0x
60

28
0

0x
60

34
0

0x
60

58
0

0x
66

34
0

0x
66

38
0

Addresses

backspace

space

enter

alphabet

In
pu

t

Cache template matrix for the default AOSP keyboard
(on a Samsung Galaxy S6)

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201628



www.iaik.tugraz.at

CTA: taps and swipes

0 2 4 6 8 10 12 14 16 18

50

100

150

200

Tap Tap Tap Swipe Swipe Swipe Tap Tap Tap Swipe Swipe

Time in seconds

A
cc

es
s

tim
e

measured on an Alcatel One Touch Pop 2
Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201629



www.iaik.tugraz.at

CTA: taps and swipes

0 1 2 3 4 5 6 7 8 9

200

400

Tap Tap Tap Swipe Swipe Swipe

Time in seconds

A
cc

es
s

tim
e

measured on a Samsung Galaxy S6
Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201630



www.iaik.tugraz.at

CTA: taps and swipes

0 1 2 3 4 5 6 7

200

400

600

800

Tap Tap Tap Swipe Swipe Swipe

Time in seconds

A
cc

es
s

tim
e

measured on measured on a OnePlus One
Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201631



www.iaik.tugraz.at

CTA: distinguishing keys

0 1 2 3 4 5 6 7

100

200

300

t h i s Space i s Space a Space m e s s a g e

Time in seconds

A
cc

es
s

tim
e

Key
Space

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201632



www.iaik.tugraz.at

Bouncy Castle

a widely used crypto library

WhatsApp, ...

uses a T-table implementation

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201633



www.iaik.tugraz.at

Attacking Bouncy Castle
0x

00
0x

10
0x

20
0x

30
0x

40
0x

50
0x

60
0x

70
0x

80
0x

90
0x

A
0

0x
B

0
0x

C
0

0x
D

0
0x

E
0

0x
F

0
Plaintext byte values

A
dd

re
ss

0x
00

0x
10

0x
20

0x
30

0x
40

0x
50

0x
60

0x
70

0x
80

0x
90

0x
A

0
0x

B
0

0x
C

0
0x

D
0

0x
E

0
0x

F
0

Plaintext byte values

A
dd

re
ss

Evict+Reload (Alcatel) vs. Flush+Reload (Samsung)
Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201634



www.iaik.tugraz.at

Attacking Bouncy Castle with Prime+Probe (Alcatel)

0x
00

0x
10

0x
20

0x
30

0x
40

0x
50

0x
60

0x
70

0x
80

0x
90

0x
A

0
0x

B
0

0x
C

0
0x

D
0

0x
E

0
0x

F
0

Plaintext byte values

0x3C0
0x380
0x340
0x300
0x2C0
0x280
0x240

O
ff

se
t

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201635



www.iaik.tugraz.at

Leakage from ARM TrustZone (RSA signatures)

250 260 270 280 290 300 310 320 330 340 350

0

0.5

1

1.5
·106

Set number

P
ro

bi
ng

tim
e

in
C

P
U

cy
cl

es Valid key 1
Valid key 2
Valid key 3
Invalid key

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201636



www.iaik.tugraz.at

Conclusions

all the powerful cache attacks applicable to smartphones

monitor user activity with high accuracy

derive crypto keys

ARM TrustZone leaks through the cache

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201637



www.iaik.tugraz.at

ARMageddon:
Cache Attacks on Mobile Devices

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, Stefan Mangard
Graz University of Technology

August 11, 2016 — Usenix Security 2016

Daniel Gruss, Graz University of Technology
August 11, 2016 — Usenix Security 201638


	Background
	Challenges
	Solving challenges
	Results

