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iMessage

• Created	in	2011
• 1	billion	deployed	devices
• 200,000	messages	per	second	peak	
• First	major	deployment	of	end-to-end	
encrypted	chat

• Used	in	other	things:
– Handoff
– Other	undisclosed	products





All	encryption	is	not	equal



Reducing	iMessage	Security



“Server”	can	be	very	complex	and	insecure	…



…	And	have	skilled	attackers
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Chosen	Ciphertext	Attack

From	Modern	Cryptography	Katz	and	Lindell

• Attacker	can	query	on	
any	ciphertext	but	
challenged	one

• “Who	would	build	
such	a	system?”



“Format	Oracles”

• Suppose	instead	of	decrypting	the	message,	
the	server	tells	us	if	it	is	valid?

• E.g.		Is	the	message	the	right	length
• Or	if	it is	encoded/serialized	incorrectly	



Does	happen	in	the	real	world



iMessage:	No	padding,	No	XML,	etc.
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Over	the	lip	of	the	Volcano	
Finding	a	new	format	oracle
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iMessage	Format:	What’s	in	the	box?	
• Builds	on	a	partial	RE	by	Quarks	Lab
• Ciphertext	is	a	GZIP	compressed	binary	plist
• Part	of	the	message	is	put	in	the	RSA	ciphertext	to	save	space



Countermeasure
• The	sender	ID	is	stored	in	the	ciphertext
• Client	rejects	if	internal	sender	ID	does	not	match	external	ID
• Luckily,	the	ciphertext	is	malleable!!	



GZIP:	another	catch
• HEADER		+	compressed	message	+	CRC32
• CRC	checksum	of	decompressed	message
• Decompression	fails	if	the	checksum	is	wrong!



Fun	with	CRC32

•Interesting	mathematical	fact:
CRC(a)⊕CRC(b)=CRC(a⊕b)
• {slightly	different	for	non-zero	IVs}
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DEFLATE

• GZIP	uses	DEFLATE	for	compression
• DEFLATE	is
– Lempel	– Ziv encoding	for	repeated	strings
– Huffman	coding	of	the	resulting	stream

• Flipping	a	bit	in	a	Huffman	symbol	MAY	
NOT	flip	the	same	bit	in	the	decoded	
character

Huffman	
Symbol

ASCII

E 11 01000101	

H 10 01001000	

I 101 01001001	
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oracle	
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Observing	the	oracle

• We	need	to	see	if	when	a	message	is	received,	it	decompresses	
successfully

• iMessage	does	not	report	errors	to	the	sender
• Read	receipts	require	someone	to	see	the	message



iMessage



Attachment	messages

• Can	see	if	message	decompresses
• Requests	block	download	response	to	hide	message
• Can	mutate	message	to	point	download	request	to	attacker	
controlled	server	(e.g.	i8loud.com)



Attachment	message	payload
• {'gv':	'8',	'pv':	0,	'p':	['mailto:alice.jhuisi@gmail.com',	
'mailto:jhuisiscratch@gmail.com'],	'gid':	'A9CD06B6-6198-4289-A2C1-
678B4E43ED77',	't':	u'\ufffc',	'v':	'1',	'x':	'<html><body><FILE	
name="04duck.png"	width="480"	height="673"	datasize="489847"	mime-
type="image/png"	uti-type="public.png"	mmcs-
owner="MAB49B97D4B303E44942B4D05829B4F68012E577BBF0242A03E
714F4B3F9D69CD.C01USN00"	mmcs-url="https://p10-
content.icloud.com/MAB49B97D4B303E44942B4D05829B4F68012E577BB
F0242A03E714F4B3F9D69CD.C01USN00"	mmcs-signature-
hex="01AB6ED842CC96A19C19D1CF3FECA0CB37CE17B07D"	file-
size="489847"	decryption-
key="00F49B0E7388F578592FBB1618052675079DE82F0ABDE4BD5C4B2F5
AF1426061DC"/>	[	OPTIONAL	MESSAGE]	</body></html>'}



Attack	gets	harder

• Attachment	messages	use	a	dynamic	Huffman	
table	which	we	don’t	know

• We	must	recover	the	table
–We	basically	have	to	edit	known	plaintext	in	the	
message

– Variable	length	symbols,	so	we	don’t	know	which	
decompressed	byte	we	are	affecting

– Detect	symbol	edges	(with	high	probability)	with	
double	bit	flips



Complete	Attack

• Get	message	
• Change	sender	ID
• Use	CRCs	guess	and	check	for	chosen	ciphertext	
attack	to:
– Recover	Huffman	table
– Read	attachment	key	

• Decrypt	attachment	with	recovered	key



Real	attack

• Requires	2^18	oracle	queries	
• Long	tail	on	message	processing	times	with	an	upper	bound	of	
1	second,	average	of	390	ms

• Takes	73	hours	to	execute	attack (reducible	to	35	hours	via	
backtracking)

• Recovered	232	of	256	bits	in	the	encryption	key	for	the	
attachment



• Recovers	all	but	40	bits	
of	the	key	for	34%	of	
messages	
(brute	force	<	24	hour)

• Recovers	all	but	24	bits	
of	key	for	23%	of	
messages
(brute	force	<	1	hours)

Simulating	larger	numbers	of	attacks



Ideal	world	solutions:

• Use	Axolotl/Signal
• Just	use	authenticated	encryption
– AES-GCM/OCB
– Include	an	HMAC	

• Breaks	backward	compatibility
• Hard	to	do	with	1	billion	deployed	devices



Real	World
Mitigations



Without	breaking	existing	devices

• Recommended	backward-compatible	mitigations
– Prevent	the	identity	misbinding attack	by	moving	sender	ID	to	non-
malleable	RSA-OAEP	ciphertext

– Prevent	chosen	ciphertext	attack	by	blacklisting	RSA-OAEP	
ciphertexts that	fail	to	decrypt

• RSA	blacklisting		deployed	in	IOS	9.3+	and	OSX	10.11.4+
• Took	Apple	4	months	and	30	engineers	to	deploy
• Released	on	March	21,	2016







This	shaky	edifice	
could	crumble	at	

any	moment	

Questions?


