
Dancing	on	the	Lip	of	the	
Volcano:	Chosen	
Ciphertext	Attacks	on	
Apple	iMessage	

Christina	Garman
Matthew	Green
Gabriel	Kaptchuk
Ian	Miers
Michael	Rushanan



iMessage

• Created	in	2011
• 1	billion	deployed	devices
• 200,000	messages	per	second	peak	
• First	major	deployment	of	end-to-end	
encrypted	chat

• Used	in	other	things:
– Handoff
– Other	undisclosed	products





All	encryption	is	not	equal



Reducing	iMessage	Security



“Server”	can	be	very	complex	and	insecure	…



…	And	have	skilled	attackers



iMessage



iMessage	

RSA	encryption	
of	K

ECDSA	Signature	
by	sender	

Message,	AES-CTR	
encrypted	with	K



RSA	encryption	
of	K

ECDSA	Signature	
by	sender	

Message,	AES-CTR	
encrypted	with	K

RSA	encryption	
of	K

ECDSA	Signature	
by	ATTACKER

Mutated	
Ciphertext

Identity	Misbinding Attack



RSA	encryption	
of	K

ECDSA	Signature	
by	sender	

Message,	AES-CTR	
encrypted	with	K

RSA	encryption	
of	K

RSA	encryption	
of	K

ECDSA	Signature	
by	ATTACKER

Mutated	
Ciphertext

Flip	bits	in	AES
ciphertext	

Ciphertext	malleability	



Chosen	Ciphertext	Attack

From	Modern	Cryptography	Katz	and	Lindell

• Attacker	can	query	on	
any	ciphertext	but	
challenged	one

• “Who	would	build	
such	a	system?”



“Format	Oracles”

• Suppose	instead	of	decrypting	the	message,	
the	server	tells	us	if	it	is	valid?

• E.g.		Is	the	message	the	right	length
• Or	if	it is	encoded/serialized	incorrectly	



Does	happen	in	the	real	world



iMessage:	No	padding,	No	XML,	etc.

RSA	encryption	
of	K

ECDSA	Signature	
by	sender	

Message,	AES-CTR	
encrypted	with	K



Over	the	lip	of	the	Volcano	
Finding	a	new	format	oracle



RSA	encryption	
of	K

ECDSA	Signature	
by	sender	

Message,	AES-CTR	
encrypted	with	K

RSA	encryption	
of	K FLIP	Bits

1

2

4

Exploit	some	
format	

RSA	encryption	
of	K

ECDSA	Signature	
by	ATTACKERMutated	Ciphertext

3

Check	if	mutated	ciphertext decrypts	and	validates



iMessage	Format:	What’s	in	the	box?	
• Builds	on	a	partial	RE	by	Quarks	Lab
• Ciphertext	is	a	GZIP	compressed	binary	plist
• Part	of	the	message	is	put	in	the	RSA	ciphertext	to	save	space



Countermeasure
• The	sender	ID	is	stored	in	the	ciphertext
• Client	rejects	if	internal	sender	ID	does	not	match	external	ID
• Luckily,	the	ciphertext	is	malleable!!	



GZIP:	another	catch
• HEADER		+	compressed	message	+	CRC32
• CRC	checksum	of	decompressed	message
• Decompression	fails	if	the	checksum	is	wrong!



Fun	with	CRC32

•Interesting	mathematical	fact:
CRC(a)⊕CRC(b)=CRC(a⊕b)
• {slightly	different	for	non-zero	IVs}



? ? ? ? ?M:

0 0 0 1 O

⊕
CRC(B)B:

? ? ? ? ?M’:

Correcting	CRCs	for	bit	flips

CRC(B)⊕

CRC(M)

CRC(M)



? ? ? ? ?M:

0 0 0 1 O

⊕
B:

? ? ? ? ?M’:

There’s	a	catch

Decrypt
decompress

CRC(M)

CRC(B)⊕CRC(M)

CRC(B)



? ? ? ? ?M:

0 0 0 1 O

⊕
B:

? ? ? ? ?M’:

There’s	a	catch

Decrypt
decompress

CRC(B)⊕CRC(M)

CRC(B)

CRC(M)



? ? ? ? ?M:

0 0 0 1 O

⊕
B:

? ? ? ? ?M’:

There’s	a	catch

Decrypt
decompress

CRC(M)

CRC(B)⊕CRC(M)

CRC(B)



DEFLATE

• GZIP	uses	DEFLATE	for	compression
• DEFLATE	is
– Lempel	– Ziv encoding	for	repeated	strings
– Huffman	coding	of	the	resulting	stream

• Flipping	a	bit	in	a	Huffman	symbol	MAY	
NOT	flip	the	same	bit	in	the	decoded	
character

Huffman	
Symbol

ASCII

E 11 01000101	

H 10 01001000	

I 101 01001001	



A ? ? ? ? CRC(M)

Message

B ? ? ? ?

Decompressed	message	M’

CRC32(M)

M’:

M:

1 1 O O 1 O 1 1 0 1 1 O 0 1 0 0

Decrypt
decompress

Compress
Encrypt

⊕ Compressed	and	encrypted	message	

❌CRC(M)⊕CRC(A⊕B 04)



A ? ? ? ? CRC(M)

Message

C ? ? ? ?

Decompressed	message	M’

CRC32(M)

M’:

M:

1 1 O O 1 O 1 1 0 1 1 O 0 1 0 0

Decrypt
decompress

Compress
Encrypt

⊕ Compressed	and	encrypted	message	

❌CRC(M)⊕CRC(A⊕C 04)



H ? ? ? ? CRC(M)

Message

E ? ? ? ?

Decompressed	message	M’

CRC32(M)

M’:

M:

1 1 O O 1 O 1 1 0 1 1 O 0 1 0 0

Decrypt
decompress

Compress
Encrypt

⊕ Compressed	and	encrypted	message	

CRC(M)⊕CRC(H⊕E 04) ✓



H E ? ? ? CRC(M)

Message

H D ? ? ?

Decompressed	message	M’

CRC(M)⊕CRC(01 E⊕D 03)

CRC32(M)

M’:

M:

Decrypt
decompress

Compress
Encrypt

⊕ Compressed	and	encrypted	message	

✓

1 1 O O 1 O 1 1 0 1 1 O 0 1 0 0



H E L ? ? CRC(M)

Message

H E T ? ?

Decompressed	message	M’

CRC(M)⊕CRC(02 L⊕T 02)

CRC32(M)

M’:

M:

Decrypt
decompress

Compress
Encrypt

⊕ Compressed	and	encrypted	message	

✓

1 1 O O 1 O 1 1 0 1 1 O 0 1 0 0



H E L L ? CRC(M)

Message

H E L K ?

Decompressed	message	M’

CRC(M)⊕CRC(03 L⊕K 0)

CRC32(M)

M’:

M:

Decrypt
decompress

Compress
Encrypt

⊕ Compressed	and	encrypted	message	

✓

1 1 O O 1 O 1 1 0 1 1 O 0 1 0 0



H E L L O CRC(M)

Message

H E L L N

Decompressed	message	M’

CRC(M)⊕CRC(04 O⊕N )

CRC32(M)

M’:

M:

Decrypt
decompress

Compress
Encrypt

⊕ Compressed	and	encrypted	message	

✓

1 1 O O 1 O 1 1 0 1 1 O 0 1 0 0



Compression	
oracle	



RSA	encryption	
of	K

ECDSA	Signature	
by	sender	

Message,	AES-CTR	
encrypted	with	K

RSA	encryption	
of	K

1

2

4

GZIP	oracle

RSA	encryption	
of	K

ECDSA	Signature	
by	ATTACKERMutated	Ciphertext

3

Check	if	mutated	ciphertext decrypts	and	validates



Observing	the	oracle

• We	need	to	see	if	when	a	message	is	received,	it	decompresses	
successfully

• iMessage	does	not	report	errors	to	the	sender
• Read	receipts	require	someone	to	see	the	message



iMessage



Attachment	messages

• Can	see	if	message	decompresses
• Requests	block	download	response	to	hide	message
• Can	mutate	message	to	point	download	request	to	attacker	
controlled	server	(e.g.	i8loud.com)



Attachment	message	payload
• {'gv':	'8',	'pv':	0,	'p':	['mailto:alice.jhuisi@gmail.com',	
'mailto:jhuisiscratch@gmail.com'],	'gid':	'A9CD06B6-6198-4289-A2C1-
678B4E43ED77',	't':	u'\ufffc',	'v':	'1',	'x':	'<html><body><FILE	
name="04duck.png"	width="480"	height="673"	datasize="489847"	mime-
type="image/png"	uti-type="public.png"	mmcs-
owner="MAB49B97D4B303E44942B4D05829B4F68012E577BBF0242A03E
714F4B3F9D69CD.C01USN00"	mmcs-url="https://p10-
content.icloud.com/MAB49B97D4B303E44942B4D05829B4F68012E577BB
F0242A03E714F4B3F9D69CD.C01USN00"	mmcs-signature-
hex="01AB6ED842CC96A19C19D1CF3FECA0CB37CE17B07D"	file-
size="489847"	decryption-
key="00F49B0E7388F578592FBB1618052675079DE82F0ABDE4BD5C4B2F5
AF1426061DC"/>	[	OPTIONAL	MESSAGE]	</body></html>'}



Attack	gets	harder

• Attachment	messages	use	a	dynamic	Huffman	
table	which	we	don’t	know

• We	must	recover	the	table
–We	basically	have	to	edit	known	plaintext	in	the	
message

– Variable	length	symbols,	so	we	don’t	know	which	
decompressed	byte	we	are	affecting

– Detect	symbol	edges	(with	high	probability)	with	
double	bit	flips



Complete	Attack

• Get	message	
• Change	sender	ID
• Use	CRCs	guess	and	check	for	chosen	ciphertext	
attack	to:
– Recover	Huffman	table
– Read	attachment	key	

• Decrypt	attachment	with	recovered	key



Real	attack

• Requires	2^18	oracle	queries	
• Long	tail	on	message	processing	times	with	an	upper	bound	of	
1	second,	average	of	390	ms

• Takes	73	hours	to	execute	attack (reducible	to	35	hours	via	
backtracking)

• Recovered	232	of	256	bits	in	the	encryption	key	for	the	
attachment



• Recovers	all	but	40	bits	
of	the	key	for	34%	of	
messages	
(brute	force	<	24	hour)

• Recovers	all	but	24	bits	
of	key	for	23%	of	
messages
(brute	force	<	1	hours)

Simulating	larger	numbers	of	attacks



Ideal	world	solutions:

• Use	Axolotl/Signal
• Just	use	authenticated	encryption
– AES-GCM/OCB
– Include	an	HMAC	

• Breaks	backward	compatibility
• Hard	to	do	with	1	billion	deployed	devices



Real	World
Mitigations



Without	breaking	existing	devices

• Recommended	backward-compatible	mitigations
– Prevent	the	identity	misbinding attack	by	moving	sender	ID	to	non-
malleable	RSA-OAEP	ciphertext

– Prevent	chosen	ciphertext	attack	by	blacklisting	RSA-OAEP	
ciphertexts that	fail	to	decrypt

• RSA	blacklisting		deployed	in	IOS	9.3+	and	OSX	10.11.4+
• Took	Apple	4	months	and	30	engineers	to	deploy
• Released	on	March	21,	2016







This	shaky	edifice	
could	crumble	at	

any	moment	

Questions?


