
uXOM: Efficient eXecute-Only Memory
on Cortex-M

Donghyun Kwon1,4, Jangseop Shin1, Giyeol Kim1,

Byoungyoung Lee1,2, Yeongpil Cho3, Yunheung Paek1

1Seoul National University, 2Purdue University, 3Soongsil University,
4Electronics and Telecommunications Research Institute

eXecute-Only Memory (XOM)

▪ A memory which has only a execute permission

– No read and write permission

▪ Purpose

– Protect intellectual properties (IPs)

– Prohibit obtaining CRA(Code Reuse Attack) gadgets at runtime

• [Stephen et al. S&P’15]

▪ High-end CPU architectures support XOM

• X86 – EPT, MPK

• AArch64 - MMU

2uXOM: Efficient eXecute Only Memory on Cortex-M

Motivation

▪ ARMv7-M architecture

– Used in Cortex-M3/4/7 processors

• prominent processor in embedded systems

– No MMU

– No execute-only permission in MPU (Memory Protection Unit)

• Available permissions: NA, RO, RX, RW, RWX

▪ We propose uXOM

– New software technique to implement XOM on Cortex-M processors.

3uXOM: Efficient eXecute Only Memory on Cortex-M

Threat model & Assumption

▪ Consider software attacks at runtime

– Assume that target firmware has memory vulnerabilities.

– Attacker can perform arbitrary memory read and write

– Attacker can subvert control-flow

• Manipulate function pointer or return address

▪ Not consider offline attacks on firmware

▪ Not consider hardware attacks

– Bus probing, memory tampering, etc.

▪ Any software components of the firmware are not trusted

– include the exception handlers

▪ All software components are executed in privileged mode

– [Abraham el al. S&P’17], [Chung Hwan et al. NDSS’18]

4uXOM: Efficient eXecute Only Memory on Cortex-M

Basic Design

5

…

uXOM: Efficient eXecute Only Memory on Cortex-M

Code memoryLDR R0, [R1]

Basic Design

6

LDRT R0, [R1]

P: RX, U: NA

…

Execute the code
in Privileged mode

1

3

2

uXOM: Efficient eXecute Only Memory on Cortex-M

Code memory

Basic Design

7

LDRT R0, [R1]

P: RX, U: NA

…

Private Peripheral
Bus (PPB)

STRT R2, [R3]

…

3

2

4

uXOM: Efficient eXecute Only Memory on Cortex-M

Execute the code
in Privileged mode

1

Code memory

Challenges

8

▪ C1. Unconvertible memory instructions

– Exclusive memory instructions (LDREX, STREX)

– PPB access memory instructions

uXOM: Efficient eXecute Only Memory on Cortex-M

Challenges

9

▪ C1. Unconvertible memory instructions

– Exclusive memory instructions (LDREX, STREX)

– PPB access memory instructions

▪ C2. Malicious indirect branches

– Jump to unconverted memory instructions

• By manipulating target address register

▪ C3. Malicious exception returns

– Return to unconverted memory instructions

• By manipulating exception context (PC) in the stack

uXOM: Efficient eXecute Only Memory on Cortex-M

Challenges

10

▪ C1. Unconvertible memory instructions

– Exclusive memory instructions (LDREX, STREX)

– PPB access memory instructions

▪ C2. Malicious indirect branches

– Jump to unconverted memory instructions

• By manipulating target address register

▪ C3. Malicious exception returns

– Return to unconverted memory instructions

• By manipulating exception context (PC) in the stack

▪ C4. Malicious data manipulation

uXOM: Efficient eXecute Only Memory on Cortex-M

Challenges

11

▪ C1. Unconvertible memory instructions

– Exclusive memory instructions (LDREX, STREX)

– PPB access memory instructions

▪ C2. Malicious indirect branches

– Jump to unconverted memory instructions

• By manipulating target address register

▪ C3. Malicious exception returns

– Return to unconverted memory instructions

• By manipulating exception context (PC) in the stack

▪ C4. Malicious data manipulation

▪ C5. Unintended instructions

– Unaligned execution

– Execution of embedded data in the code memory

uXOM: Efficient eXecute Only Memory on Cortex-M

Solving Challenges

▪ Finding Unconvertible Memory Instructions ➔ C1

– Exclusive Memory Instructions

• Identified by opcode in the instruction encoding

– PPB access instructions

• Check if the accessed memory address is belonging to PPB region

• Intra-procedure analysis

12uXOM: Efficient eXecute Only Memory on Cortex-M

Solving Challenges

▪ Atomic Verification Technique ➔ C4

– Add the verification routine before the unconverted instruction

– Disable exception during the instruction sequence

• Protection against an attacker generates an exception after the verification code

13uXOM: Efficient eXecute Only Memory on Cortex-M

update_register:

str r1, [r0]

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

update_register:

cpsid i

[verification routine]

str r1, [r0]

cpsie i

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

Atomic instruction
Sequence

Solving Challenges

▪ Atomic Verification Technique (cont’d) ➔ C2, C3

– 1) Use a dedicated register as memory address register of unconverted instructions

– 2) Enforce following two invariant properties

• IP1) When atomic instruction seq. is executed, the dedicated register holds sensitive address

• IP2) When atomic instruction seq. is not executed, the dedicated register holds non-harmful
value

– ➔ instrumentation for IP2 requires tremendous overhead

– ➔The dedicated register cannot be used in the code except for the atomic verification

sequences

▪ Drawback

– Increase register spills ➔ Performance Drop

14uXOM: Efficient eXecute Only Memory on Cortex-M

Solving Challenges

▪ Atomic Verification Technique (cont’d) ➔ C2, C3

– 1) Use a SP register as memory address register of unconverted instructions

– 2) Enforce following two invariant properties

• IP1) When atomic instruction seq. is executed, SP register holds sensitive address

• IP2) When atomic instruction seq. is not executed, SP register points non-harmful value

– ➔ instrumentation for IP2 could be implemented in a efficient way

– ➔ SP register can be used in the code including the atomic verification sequences

15uXOM: Efficient eXecute Only Memory on Cortex-M

▪ Atomic Verification Technique (cont’d)

Solving Challenges

16uXOM: Efficient eXecute Only Memory on Cortex-M

update_register:

cpsid i

mov r10, sp

mov sp, r0

[verification routine]

str r1, [sp]

mov sp, r10

[check sp]

cpsie i

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

// disable interrupt

// backup the value of sp

// set sp to a target address (IP1)

// verify the subsequent unconverted inst.

// perform an unconverted inst.

// restore the value of sp

// check the value of sp (IP2)

// enable interrupt

update_register:

str r1, [r0]

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

Solving Challenges

▪ Handling Unintended Instructions ➔ C5

– Replace the exploitable instruction with safe instruction sequence

• Serves the same functionality

– Use static binary analysis to find out all exploitable instructions.

17uXOM: Efficient eXecute Only Memory on Cortex-M

Evaluation

▪ Implementation

– Code Instrumentation: LLVM 5.0

– Binary analysis: Radare2

▪ Experiment setup

– Arduino-due

• Cortex-M3 processor

– RIOT-OS

– BEEBS benchmark suite

18uXOM: Efficient eXecute Only Memory on Cortex-M

Evaluation

19uXOM: Efficient eXecute Only Memory on Cortex-M

Evaluation

20uXOM: Efficient eXecute Only Memory on Cortex-M

Evaluation

21uXOM: Efficient eXecute Only Memory on Cortex-M

Evaluation

22uXOM: Efficient eXecute Only Memory on Cortex-M

Conclusion

▪ Software technique to implement execute-only memory on Cortex-M processors

– MPU, unprivileged memory instructions

▪ Strong threat model

– Assuming attacker is able to read/modify the memory and subvert control-flow

– Do not assume any software TCB in the system

▪ Evaluation

– Better than SFI-based XOM in terms of performance and security

– uXOM is compatible with existing XOM-based solutions (Key protection, CRA defense)

23uXOM: Efficient eXecute Only Memory on Cortex-M

Q & A

Thank you for listening

