The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links

Jiahao Cao, Qi Li, Renjie Xie, Kun Sun, Guofei Gu,
Mingwei Xu, and Yuan Yang
Outline

• Background
• Overview of the CrossPath Attack
• Challenges
• Adversarial Path Reconnaissance
• Evaluation
• Possible Defense
• Conclusion
Software-Defined Networking (SDN)

- Software-Defined Networking
 - separate control and data planes
 - take centralized network control
 - enable network programmability

- SDN Control Channels
 - deliver all control traffic
 - failure results in serious disasters
 - security and reliability are vital
CrossPath Attack

- We uncover a new attack to disrupt SDN control channels
 - leverage **shared links** between paths of control and data traffic
 - allow **data traffic** to disrupt **control traffic**
 - disrupt a **wide range of** SDN functionalities

- Threat Model
 - an attacker compromises a host inside the target SDN
 - the target SDN applies **in-band** control
A Toy Example

- A malicious host sends **data traffic** to congest **shared links** delivering **control traffic**
Challenges

• How to find a data path that contains shared links?

• Randomly choose a data path to attack?
 • low success ratio due to only a few shared links

• Apply existing scanning tools to find such a data path?
 • ineffectiveness due to unique SDN data plane

Assume m switches in total,
• \(O(m^2)\) total links
• \(O(m)\) shared links connecting them with the controller

SDN
• No IP addresses in switch ports
• No TTL decrease for packets passing SDN switches
Adversarial Path Reconnaissance

- Key Observation: **control path delays** can be an **indicator** on whether a data path contains shared links

- Control Path Delay between S_2 and C: $T_{S_2,C}$

- Case 1: a data path contains shared links
 - $T_{S_2,C} = 100\ ms$ due to congestion
Adversarial Path Reconnaissance

- Key Observation: **control path delays** can be an **indicator** on whether a data path contains shared links

 - Control Path Delay between S_2 and C: $T_{S_2,C}$

 - Case 1: a data path contains shared links
 - $T_{S_2,C} = 100 \text{ ms due to congestion}$

 - Case 2: a data path contains no shared links
 - $T_{S_2,C} = 10 \text{ ms}$
Key Observation: **control path delays** can be an **indicator** on whether a data path contains shared links.

- Control Path Delay between S_2 and C: $T_{S_2,C}$
- Case 1: a data path contains shared links
 $T_{S_2,C} = 100 \text{ ms}$ due to congestion
- Case 2: a data path contains no shared links
 $T_{S_2,C} = 10 \text{ ms}$
Control Path Delay Measurement

• How to measure control path delays with an end host?
 • Leverage side effects of dynamic flow rule installation to measure them

\[RTT_1 = t_{data} + t_{control} \]
\[RTT_2 = t_{data} \]
\[t_{control} = RTT_1 - RTT_2 \]

Control path delays can be calculated based on the first two packets of a new flow
Reconnaissance Algorithm

• Algorithm

Choose a data path → Flood data traffic → Measure control path delay → Large delay?
 yes → Find a target
 no

• Optimization
 • Improve the accuracy of reconnaissance
 • e.g., reduce the impacts of network jitters
 • Improve the efficiency of reconnaissance
 • e.g., enable concurrent reconnaissance
Experiment Setup

- A real SDN testbed consists of
 - commercial hardware SDN switches
 - an open source controller, Floodlight
 - physical hosts connecting to switches

- We replay five types of real traffic trace
 - traffic of two data centers
 - traffic of one university
 - traffic of one internet backbone
 - traffic of one computer lab

- We evaluate
 - the accuracy of adversarial path reconnaissance
 - the degradation ratio of control traffic
Accuracy and Effectiveness

reconnaissance accuracy

control traffic degradation

DC: datacenter traffic, **IB**: internet backbone traffic, **UNIV**: university traffic, **LAB**: our computer laboratory traffic
Attack Impacts on Network Functionalities

- Almost all SDN applications depend on control messages delivered in control channels to enable network functionalities.

- We measure the impacts on three popular SDN APPs:
 - ARP Proxy
 - Reactive Routing
 - Load Balancer
ARP Proxy

• The performance of ARP Proxy significantly degrades

![ARP throughput diagram](image1)

- 300 pps
- 20 pps

![ARP query delay diagram](image2)

- 70% delays >100 ms
Reactive Routing

- Reactive Routing generates various anomalies

success ratio of rule installation

host migration time

- 90% success ratio of rule installation
- 20% decrease
- 5 s to 15 s host migration time
Reactive Routing

- Reactive Routing generates various anomalies

A routing path is evicted due to a deactivated link
Load Balancer

- Load balancer incorrectly balances traffic among servers

without the attack

with the attack
Possible Defense

• Deliver control traffic with a high priority
 • implementation with priority queue or weighted round robin queue

• Proactively reserve bandwidth for control traffic
 • implementation with meter tables

<table>
<thead>
<tr>
<th>Defense Strategy</th>
<th>Rule</th>
<th>Match</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control traffic delivery with high priority</td>
<td>#1</td>
<td>control flows</td>
<td>OutPort(x), ..., SetQueue(ID=highPriQueue)</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>data flows</td>
<td>OutPort(x), ..., SetQueue(ID=lowPriQueue)</td>
</tr>
<tr>
<td>Proactive bandwidth reservation for control traffic</td>
<td>#1</td>
<td>data flows</td>
<td>OutPort(x), ..., SetMeter(ID=RateLimit)</td>
</tr>
</tbody>
</table>

1 It requires SDN switches to support PQ or WRR queuing mechanism.
2 It is used when SDN switches fail to enable PQ or WRR mechanism.
Conclusion

• Data traffic passing shared links can congest control traffic to disrupt SDN control channels

• A data path containing shared links can be found by measuring control path delays and leveraging side effects of dynamic rule installation

• Network administrators should enable priority queue or reserve bandwidth for SDN control traffic to protect control channels
Thank you!

Jiahao Cao
caojh15@mails.tsinghua.edu.cn
Backup: Theoretical Analysis

- The number of explored data paths to find a target data path containing a shared link

$$E(X) = \sum_{k=1}^{n-\gamma} \frac{k\gamma}{n-k} \prod_{j=0}^{k-2} \left(1 - \frac{\gamma}{n-1-j}\right)$$

n: The total number of hosts in SDN

γ: The total number of data paths containing shared links, depending on the topology and the routing decision
Backup: Coverage

- Simulation among 261 real network topologies
- Connections between the controller and switches
 - shortest path (SP)
 - minimum spanning tree (MST)
 - random (RS)