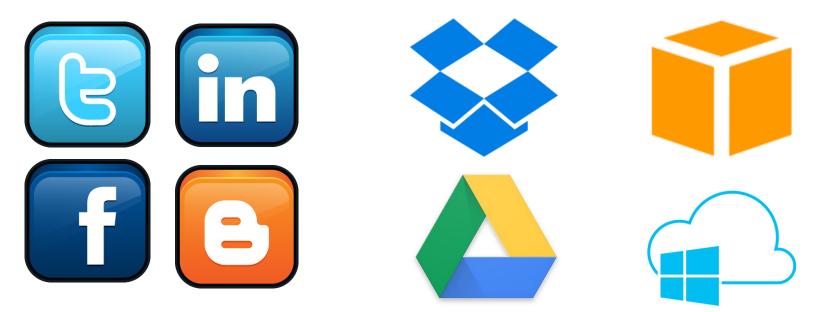
#### **EvilCohort: Detecting Communities** of Malicious Accounts on **Online Services**

Gianluca Stringhini<sup>1</sup>, Pierre Mourlanne<sup>2</sup>, Gregoire Jacob<sup>3</sup>, Manuel Egele<sup>4</sup>, Christopher Kruegel<sup>2,3</sup>, and Giovanni Vigna<sup>2,3</sup> Boston University<sup>4</sup>

University College London<sup>1</sup> UC Santa Barbara<sup>2</sup> Lastline Inc.<sup>3</sup>

# Online services are abused by cybercriminals



- Spam
- Crawling sensitive information / documents
- Storing illegal content
- Running DoS attacks / hosting C&C servers

## State of the art in malicious account detection

Current techniques leverage domain-specific elements to detect malicious activity on one type of service

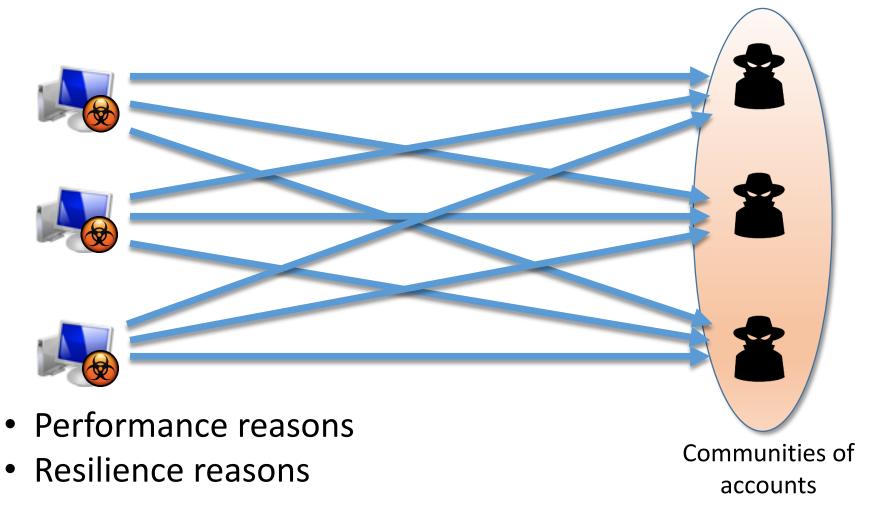
Exam

For

There are elements that are common to malicious activity on all online services!

- Blos
- Youtube [Benevenuto2009]
- Social Networks [Mittal2009], [Grier2010], [Stringhini2010]
- Webmail accounts [Taylor2006], [Stringhini2015]

#### Botnets accessing online accounts



Advantages of community detection

#### Service-agnostic

Can be done on any service that uses accounts

#### Activity-agnostic

#### We only look at how accounts are accessed

Different types of cybercriminal operations

- Crawl the online service
- Use the service as C&C channel
- Use the service as a "drop" service

#### Distributed access is prevalent

Web-based email service logs, 1 day period 72M emails sent by 21M distinct accounts

170k vetted spam accounts for ground truth

- 66k accounts accessed by a single IP address
- 104k accounts accessed by multiple IP addresses

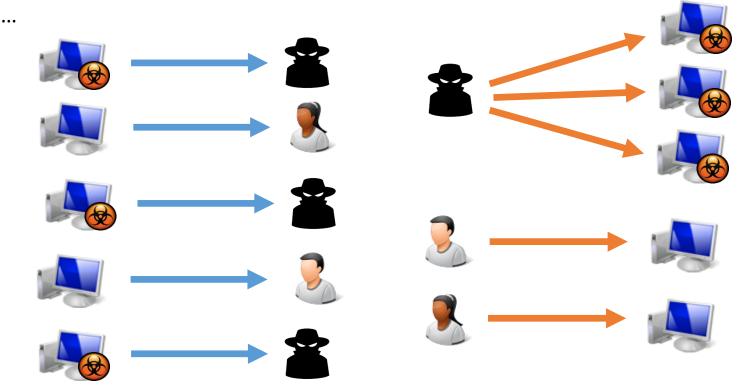
Just looking at accounts that are accessed by many IP addresses does not work (32% FPs for accounts accessed by 10+ IPs)

## Our system: EvilCohort

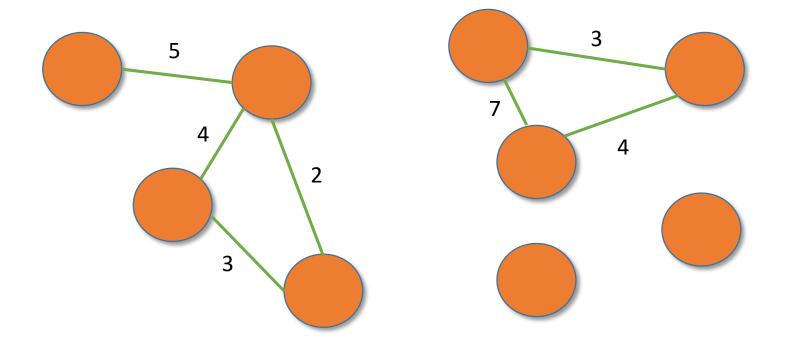
- Phase I: data collection
- Phase II: building the graph representation
- Phase III: finding communities
- Phase IV (optional): characterizing communities

#### Phase I: data collection

Timestamp\_1, IP\_address\_1, Account\_1 Timestamp\_2, IP\_address\_2, Account\_2 Timestamp\_3, IP\_address\_3, Account\_3 Timestamp\_4, IP\_address\_4, Account\_1



#### Phase II: building graph representation



- Vertices are online accounts
- Edges' weight is number of shared IP addresses

## Phase III: finding communities

We apply the ``Louvain'' method for clustering:

- Iterative method
- Based on modularity optimization

We can prune edges with low weight to improve precision (threshold *s*)

## Phase IV (optional): characterizing communities

- User agent correlation
- Event-based time series
- IP address and account usage

These filters can be used to further prune false positives

### Selection of s

#### Ground truth: 103k spam accounts accessed by 2+ IPs False positive if $\leq$ 10% of the accounts sent spam



Grown knowledge: 88884200000(110(110(12829%))

#### Results in the wild

Webmail activity dataset: email events 5 month period, 1.2B emails

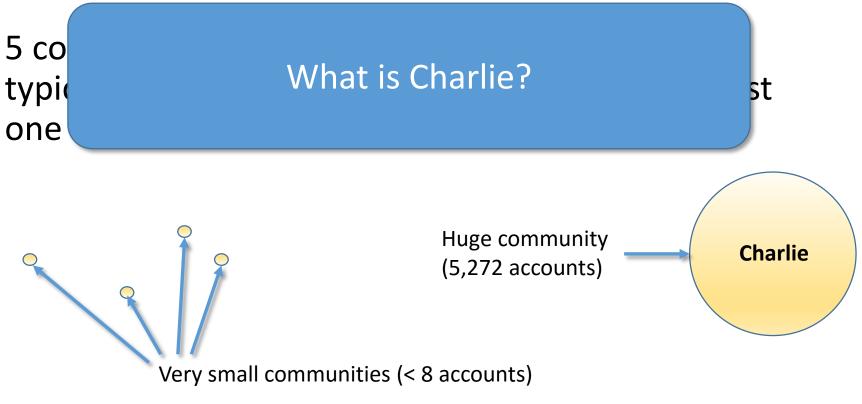
1.2M malicious accounts, 500k unknown, 23k FP (1.9%)

Online social network dataset: login events 8 day period, 14M events, 4 social networks

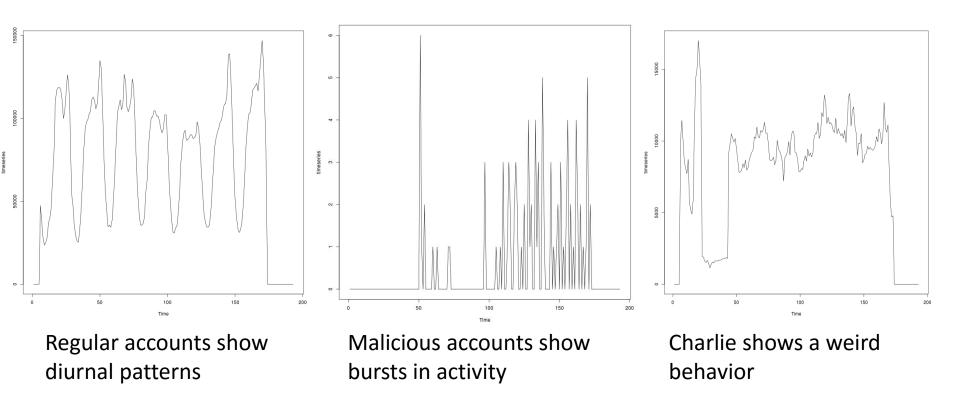
111k malicious accounts

## Analysis of the results

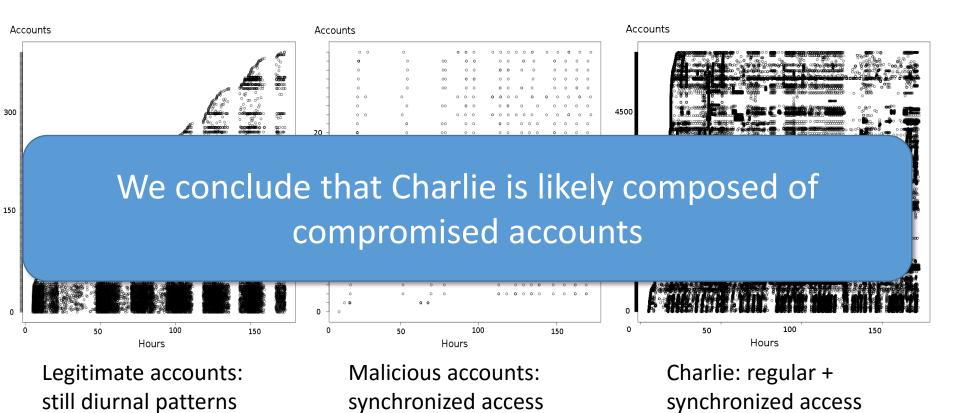
#### 111k accounts formed 83 communities



#### Event-based time series



## Account usage over time



## EvilCohort: discussion

#### Service and activity independent

Accounts do not need to perform malicious activity to be detected

Our system detects botnet-like activity, legitimate accounts are unlikely to form communities

#### Limitations

- Only works on accounts accessed by multiple IP addresses
- Does not distinguish between fake and compromised accounts

## Conclusions

I presented EvilCohort, a system that detects malicious accounts on online services by identifying communities of accounts that are accessed by a common set of IP addresses

We ran EvilCohort on two real-world datasets, and detected more than one million malicious accounts

## Questions?

g.stringhini@ucl.ac.uk @gianluca\_string