Circuit Fingerprinting Attack: Passive Deanonymization of Tor Hidden Services

Albert Kwon1 Mashael Saad Al-Sabah1,2,3 David Lazar1 Marc Dacier2 Srinivas Devadas1

1CSAIL/MIT
2Qatar Computing Research Institute
3Qatar University

August 25, 2015
Outline

1. Background
2. Observations
3. Circuit Fingerprinting Attack
4. Website Fingerprinting Hidden Services
5. Conclusion
1. Background
2. Observations
3. Circuit Fingerprinting Attack
4. Website Fingerprinting Hidden Services
5. Conclusion
Tor: The Onion Router

- Conceal users’ identities and activities

https://torproject.org

(Usenix Security 2015)
Tor: The Onion Router

- Conceal users’ identities and activities
- User picks 3 onion routers (OR),
 - Entry guard, middle, exit (circuit)

https://torproject.org
Tor: The Onion Router

- Conceal users’ identities and activities
- User picks 3 onion routers (OR),
 - Entry guard, middle, exit (circuit)
- Onion encrypts the message for the circuit

https://torproject.org
Tor: The Onion Router

- Conceal users’ identities and activities
- User picks 3 onion routers (OR),
 - Entry guard, middle, exit (circuit)
- Onion encrypts the message for the circuit
- Protect client (user) anonymity

https://torproject.org
Tor Hidden Services (HS)

- Mechanism for protecting server anonymity
Tor Hidden Services (HS)

- Mechanism for protecting server anonymity
- Useful for servers hosting sensitive information
Tor Hidden Services (HS)

- Mechanism for protecting server anonymity
- Useful for servers hosting sensitive information
Tor Hidden Services (HS)

- Mechanism for protecting server anonymity
- Useful for servers hosting sensitive information
Tor Hidden Services (HS)

- Mechanism for protecting server anonymity
- Useful for servers hosting sensitive information
Tor Hidden Services (HS)

- Mechanism for protecting server anonymity
- Useful for servers hosting sensitive information
Tor Hidden Services (HS)

- Mechanism for protecting server anonymity
- Useful for servers hosting sensitive information

![Tor Hidden Services Diagram]
Tor Hidden Services (HS)

- Mechanism for protecting server anonymity
- Useful for servers hosting sensitive information
Tor Hidden Services (HS)

- Mechanism for protecting server anonymity
- Useful for servers hosting sensitive information
Threat Model

- Provide anonymity unless both ends of a circuit are compromised
Threat Model

- Provide anonymity unless both ends of a circuit are compromised
- For HS, need to compromise two entry guards
Threat Model

- Provide anonymity unless both ends of a circuit are compromised
 - For HS, need to compromise two entry guards
- HS users/servers should look the same as regular clients
Threat Model

- Provide anonymity unless both ends of a circuit are compromised
 - For HS, need to compromise two entry guards
- HS users/servers should look the same as regular clients
- Our goal: break HS anonymity as a local adversary
Threat Model

- Provide anonymity unless both ends of a circuit are compromised
 - For HS, need to compromise two entry guards
- HS users/servers should look the same as regular clients
- Our goal: break HS anonymity as a local adversary
 - Can get accurate packet information
Threat Model

- Provide anonymity unless both ends of a circuit are compromised
 - For HS, need to compromise two entry guards
- HS users/servers should look the same as regular clients
- Our goal: break HS anonymity as a local adversary
 - Can get accurate packet information
 - Has circuit level visibility
Threat Model

- Provide anonymity unless both ends of a circuit are compromised
 - For HS, need to compromise two entry guards
- HS users/servers should look the same as regular clients
- Our goal: break HS anonymity as a local adversary
 - Can get accurate packet information
 - Has circuit level visibility
 - Malicious entry guard
Approach and Experiments

- Experiments on live Tor network
Approach and Experiments

- Experiments on live Tor network
- Client side experiment
 - Visiting multiple websites and hidden services
Approach and Experiments

- Experiments on live Tor network
 - Client side experiment
 - Visiting multiple websites and hidden services
 - Server side experiment
 - Our own HS that serves cached versions of other HS
Approach and Experiments

- Experiments on live Tor network
 - Client side experiment
 - Visiting multiple websites and hidden services
 - Server side experiment
 - Our own HS that serves cached versions of other HS
- Identify HS circuits using their unique features
Approach and Experiments

- Experiments on live Tor network
 - Client side experiment
 - Visiting multiple websites and hidden services
 - Server side experiment
 - Our own HS that serves cached versions of other HS
- Identify HS circuits using their unique features
- Classify HS once the circuits are isolated
Outline

1. Background
2. Observations
3. Circuit Fingerprinting Attack
4. Website Fingerprinting Hidden Services
5. Conclusion
Characteristics: Cumulative Distribution Function

The duration of activity
Characteristics: Cumulative Distribution Function

The number of incoming cells The number of outgoing cells
Observations

- IP circuits have unique characteristics
 - HS-IP’s are long-lived and Client-IP’s are short-lived
 - IP’s have have little incoming and outgoing cells
Observations

- IP circuits have unique characteristics
 - HS-IP’s are long-lived and Client-IP’s are short-lived
 - IP’s have have little incoming and outgoing cells
- HS-RP circuits have more outgoing than incoming
Observations

- IP circuits have unique characteristics
 - HS-IP’s are long-lived and Client-IP’s are short-lived
 - IP’s have little incoming and outgoing cells
- HS-RP circuits have more outgoing than incoming
- Streams for different .onion domains are not multiplexed
Observations

- IP circuits have unique characteristics
 - HS-IP’s are long-lived and Client-IP’s are short-lived
 - IP’s have have little incoming and outgoing cells
- HS-RP circuits have more outgoing than incoming
- Streams for different .onion domains are not multiplexed
- IP and RP circuits are disjoint from general circuits
Observations

- IP circuits have unique characteristics
 - HS-IP’s are long-lived and Client-IP’s are short-lived
 - IP’s have have little incoming and outgoing cells
- HS-RP circuits have more outgoing than incoming
- Streams for different .onion domains are not multiplexed
- IP and RP circuits are disjoint from general circuits
- Special circuits have particular starting cell sequences
Outline

1. Background
2. Observations
3. Circuit Fingerprinting Attack
4. Website Fingerprinting Hidden Services
5. Conclusion
Circuit Classification Attack

- Use the characteristics to classify circuits
 - HS-IP, Client-IP, HS-RP, Client-RP, and General
Circuit Classification Attack

- Use the characteristics to classify circuits
 - HS-IP, Client-IP, HS-RP, Client-RP, and General
- Features of the circuits
 - Duration of activity
 - The number of incoming and outgoing cells
 - Sequence of the first 10 cells
Circuit Classification Attack

- Use the characteristics to classify circuits
 - HS-IP, Client-IP, HS-RP, Client-RP, and General
- Features of the circuits
 - Duration of activity
 - The number of incoming and outgoing cells
 - Sequence of the first 10 cells
- Tree-based and k-NN for classifier
IP-Decision Tree

outgoing <= 4
 outgoing <= 3
 incoming <= 3
 DoA <= 0.66873: HS-IP (3.0)
 DoA > 0.66873: noise (16.0/1.0)
 incoming > 3: HS-IP (72.0)
 outgoing > 3
 incoming <= 4: Client-IP (199.0/12.0)
 incoming > 4: noise (39.0)
outgoing > 4
 DoA <= 13.507868
 DoA <= 1.962158: Client-IP (5.0)
 DoA > 1.962158
 incoming <= 9
 outgoing <= 7: noise (42.0)
 outgoing > 7: Client-IP (7.0)
 incoming > 9: noise (84.0)
 DoA > 13.507868: noise (6402.0/1.0)

19 nodes and 10 leaves
IP-Decision Tree

Outgoing > 4

Y

DoA > 13.5

Other

DoA > 1.96

Incoming > 9

Other

Incoming > 4

Client-IP

Other

Outgoing > 7

Client-IP

Other

N

Outgoing > 3

Incoming > 3

Incoming > 3

DoA > 0.67

Other

HS-IP
RP-Decision Tree

-1+1-1+1-1+1-1-1-1 <= 0
 -1+1-1+1-1+1-1+1 <= 0
 -1+1-1+1-1+1-1+1 <= 0
 inc_50 <= 25
 -1+1-1+1-1-1 <= 0
 -1+1-1+1-1+1-1+1 <= 0
 -1+1-1+1-1-1+1 <= 0: noise (136.0)
 -1+1-1+1-1+1-1+1 > 0: HS-RP (931.0/5.0)
 out_50 <= 25: noise (69.0/8.0)
 out_50 > 25: HS-RP (13.0/5.0)
 -1+1-1+1-1+1-1+1 > 0: HS-RP (12.0)
 inc_50 > 25: noise (3657.0)
 -1+1-1+1-1+1-1+1+1 > 0: Client-RP (38.0)
 -1+1-1+1-1+1-1+1+1 > 0: Client-RP (40.0)
 -1+1-1+1-1+1-1+1-1 > 0: Client-RP (4436.0)

17 nodes and 9 leaves
RP-Decision Tree
RP-Decision Tree
RP-Uniqueness

Sequences:
- 0, I, 0, I, 0, I, I, 0, I, 0
- 0, I, 0, I, 0, I, I, 0, I
- 0, I, 0, I, 0, I, I, 0, I, I
RP-Uniqueness

- Sequences:
 - 0, I, 0, I, 0, I, I, 0, I, 0
 - 0, I, 0, I, 0, I, I, 0, I
 - 0, I, 0, I, 0, I, I, 0, I, I

General circuit

Client-RP circuit
RP-Uniqueness

Sequences:
- 0, I, 0, I, 0, I, I, 0, I, 0
- 0, I, 0, I, 0, I, I, 0, I
- 0, I, 0, I, 0, I, I, 0, I, I

General circuit

Client-RP circuit
Evaluation: Circuit Classification

- Dataset
 - 76 HS-IP, 200 Client-IP, and 6593 others
 - 954 HS-RP, 4514 Client-RP, and 3862 others

IP Classification Accuracy

RP Classification Accuracy

Circuit Fingerprinting Attack
Outline

1 Background

2 Observations

3 Circuit Fingerprinting Attack

4 Website Fingerprinting Hidden Services

5 Conclusion
Website Fingerprinting (WF)

- Local adversary to deanonymize a user
- Classify websites using features of the communication
 - Duration of activity
 - Number of incoming/outgoing
 - Bursts of incoming/outgoing
WF Criticisms*

- Noisy streams of data
 - General circuits are multiplexed between multiple connections

WF Criticisms*

- Noisy streams of data
 - General circuits are multiplexed between multiple connections
- Size of the world
 - Experiments only include < 10,000 websites

WF Criticisms*

- Noisy streams of data
 - General circuits are multiplexed between multiple connections
- Size of the world
 - Experiments only include < 10,000 websites
- Rapidly changing pages
 - Websites’ contents (and thus traffic) are constantly changing

Website Fingerprinting HS

- HS circuits are not shared
 - Different .onion use different circuits
 - RP circuits and general circuits are disjoint
Website Fingerprinting HS

- HS circuits are not shared
 - Different .onion use different circuits
 - RP circuits and general circuits are disjoint
- Size of the world is significantly smaller
 - Only 30,000 unique .onion address
 - Even smaller number of popular HS
Website Fingerprinting HS

- HS circuits are not shared
 - Different .onion use different circuits
 - RP circuits and general circuits are disjoint

- Size of the world is significantly smaller
 - Only 30,000 unique .onion address
 - Even smaller number of popular HS

- HS pages are not rapidly changing

<table>
<thead>
<tr>
<th>Similarity</th>
<th>1 week</th>
<th>2 weeks</th>
<th>3 weeks</th>
<th>8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>1</td>
<td>0.997</td>
<td>0.994</td>
<td>0.980</td>
</tr>
<tr>
<td>Median</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mean</td>
<td>0.96</td>
<td>0.97</td>
<td>0.96</td>
<td>0.927</td>
</tr>
</tbody>
</table>
WF Experiments

- 50 “sensitive” and 950 “non-sensitive” hidden services
WF Experiments

- 50 “sensitive” and 950 “non-sensitive” hidden services
- Training set
 - 50 instances of 50 sensitive hidden services
 - 1 instance of 100 to 950 non-sensitive hidden services
WF Experiments

- 50 “sensitive” and 950 “non-sensitive” hidden services
- Training set
 - 50 instances of 50 sensitive hidden services
 - 1 instance of 100 to 950 non-sensitive hidden services
- Clients/servers visit/serve one of the 1000 pages
 - Classify into one of the sensitives or non-sensitive
WF Experiments

- 50 “sensitive” and 950 “non-sensitive” hidden services
- Training set
 - 50 instances of 50 sensitive hidden services
 - 1 instance of 100 to 950 non-sensitive hidden services
- Clients/servers visit/serve one of the 1000 pages
 - Classify into one of the sensitives or non-sensitive
 - Our own HS serving cached pages
WF Experiments

- 50 “sensitive” and 950 “non-sensitive” hidden services
- Training set
 - 50 instances of 50 sensitive hidden services
 - 1 instance of 100 to 950 non-sensitive hidden services
- Clients/servers visit/serve one of the 1000 pages
 - Classify into one of the sensitives or non-sensitive
 - Our own HS serving cached pages
- Tree-based and k-NN classifier
WF Accuracy

![Graph showing the accuracy of fingerprinting hidden services using different algorithms. The graph plots the False Positive Rate and True Positive Rate against the number of non-monitored hidden services. The algorithms compared are C4.5, CART, and k-NN.]

Client accuracy
WF Accuracy

![Graph showing WF Accuracy]

- **False Positive Rate**
 - C4.5
 - CART
 - k-NN

- **True Positive Rate**
 - C4.5
 - CART
 - k-NN

- **Number of non-monitored hidden services**
 - 0.72
 - 0.76
 - 0.80
 - 0.84
 - 0.88
 - 0.92
 - 0.96

Server accuracy

(Usenix Security 2015)
Outline

1. Background
2. Observations
3. Circuit Fingerprinting Attack
4. Website Fingerprinting Hidden Services
5. Conclusion
Potential Defenses

- Circuit classification defense
 - Obfuscate the features
- Website Fingerprinting
 - Multiplex the RP circuits
 - Previous work on defending WF attacks†

† Wang et al., Effective Attacks and Provable Defenses for Website Fingerprinting, USENIX Security 2014.
Conclusion

- Hidden service connections are fingerprintable
- Website fingerprinting is more realistic in the domain of HS
- Demonstrated effectiveness of the proposed attacks
- Data available at http://people.csail.mit.edu/kwonal/hswf.tar.gz
Thank you!