

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION 2015 24th Security Symposium

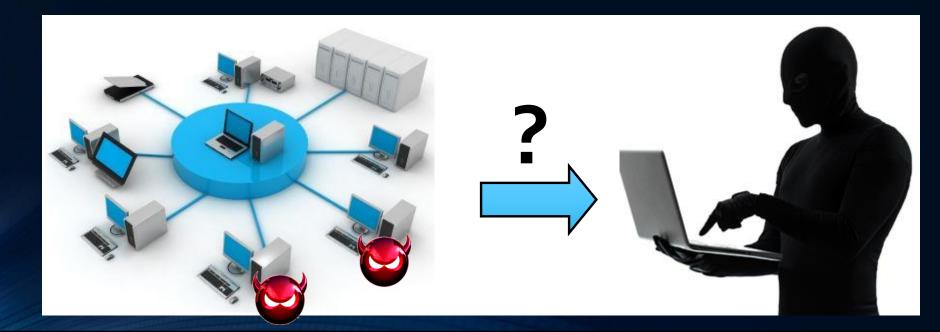
GSNem Data Exfiltration from Air-Gapped Computers over GSM Frequencies

Mordechai Guri, Assaf Kachlon, Ofer Hasson, Gabi Kedma, Yisroel Mirsky, Yuval Elovici Ben-Gurion University of the Negev, Israel

Background BRIDGING THE AIR GAP

Background Air Gapped Networks

Definition: A cyber security measure that secures computer network by **physically isolating** it from unsecured networks, such as the public Internet or another unsecured local area network.


Examples of air gapped networks:

- Military defense system
- Critical infrastructure command and control centers
- Computerized medical equipment
- Finance
- And more...

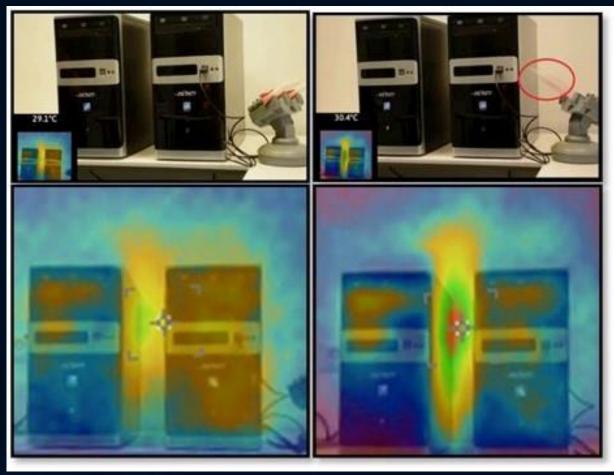
Background Air Gapped Networks

The Scenario:

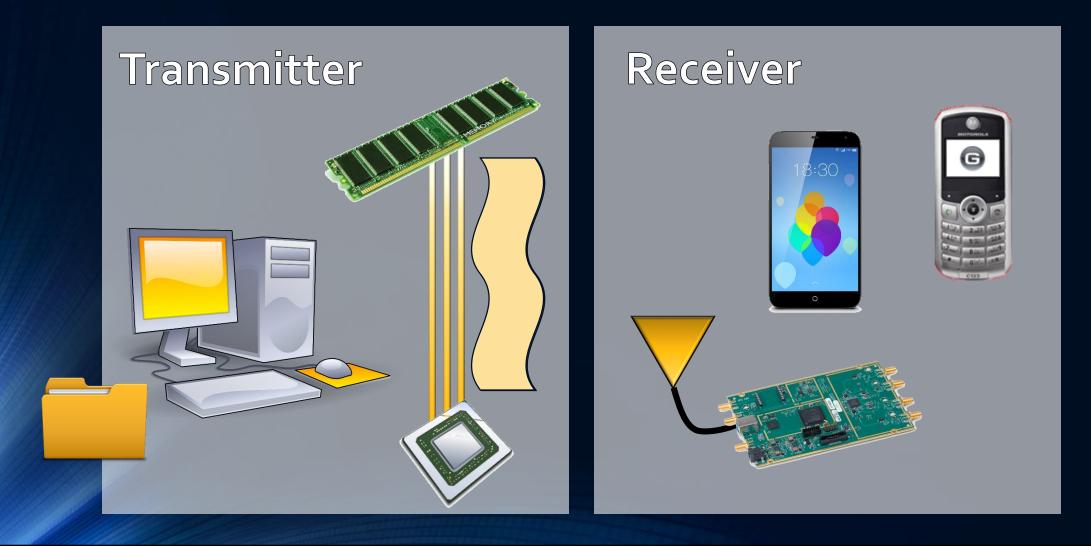
- An attacker has succeeded in infecting the network
 - USB, insider, etc...
- The Attacker now wants to retrieve data from that network (over the air gap).

Background Previous Work

Method	Transmitter	Receiver	Distance (m)	Rate (bit/s)
AirHopper [23] (78MHz -	Display cable	Cellular FM receiver	7	104- 480
Ultrasonic [21] [24]	Speaker	Microphon e	19.7	20
SAVAT [22] (~80KHz)	CPU/memory (laptops)	Dedicated equipment	1.0	N/A
BitWhisper [25]	Computer CPU/GPU	Computer Heat Sensors	0.4	8 bit/hour


Background Previous Work

Method	Transmitter	Receiver	Distance (m)	Rate (bit/s)
AirHopper [23] (78MHz - 108MHz)	Display cable	Cellular FM receiver	7	104- 480
Ultrasonic [21] [24]	Speaker	Microphon e	19.7	20
SAVAT [22] (~80KHz)	CPU/memory (laptops)	Dedicated equipment	1.0	N/A
BitWhisper [25]	Computer CPU/GPU	Computer Heat Sensors	0.4	8 bit/hour


Background Previous Work

Method	Transmitter	Receiver	Distance (m)	Rate (bit/s)
AirHopper [23] (78MHz - 108MHz)	Display cable	Cellular FM receiver	7	104- 480
Ultrasonic [21] [24]	Speaker	Microphon e	19.7	20
SAVAT [22] (~80KHz)	CPU/memory (laptops)	Dedicated equipment	1.0	N/A
BitWhisper [25]	Computer CPU/GPU	Computer Heat Sensors	0.4	8 bit/houi

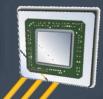
Background GSMem Overview

An ordinary desktop PC is converted into a small transmitting cellular antenna!

Demonstration Video

https://www.youtube.com/watch?v=RChj7Mg3rC4

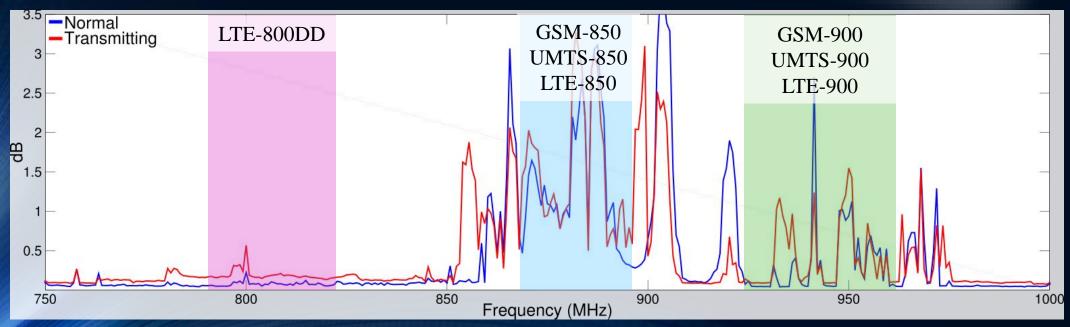
Transmitter GSMEM



Transmitter CPU-Memory BUS Emissions

How do we convert a computer's CPU-RAM configuration into a radio antenna?

How do antennas work?


- Antennas emit radio waves (EMR) by oscillating current through their terminals
- Radio waves are characterized by their frequency (oscillation in Hz) and amplitude (strength in dBm).

Transmitter CPU-Memory BUS Emissions

How do we get this "antenna" to emit EMR on a cellular band (range of frequencies)?

- **Observation 1**: A **large** CPU-RAM transfer builds up oscillating current in the configuration.
- **Observation 2**: The BUS transfers bits at the FSB speed, emitting the energy around that **frequency** (e.g. 800 MHz)

Transmitter CPU-Memory BUS Emissions

Algorithm 1 transmit32 (data)

- 1: $buffer \leftarrow \text{Aligned_Allocate}(16,4096)$
- 2: $tx_time \leftarrow 500000$
- 3: for $bit_index \leftarrow 0$ to 32 do
- 4: **if** $(data[bit_index] = 1)$ **then**
- 5: $start_time \leftarrow CURRENT_TIME()$
- 6: while $(tx_time > CURRENT_TIME() start_time)$ do 7: buffer $ptr \leftarrow buffer$
 - $buffer_ptr \leftarrow buffer$
 - for $i \leftarrow 0$ to $buffer_size$ do
 - $SIMDNTMOV(buffer_ptr, 128bit_register)$
 - $buffer_ptr \leftarrow buffer_ptr + 16$
- 11: end for
- 12: end while

13: else

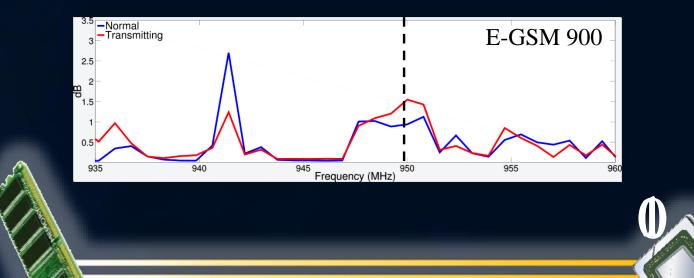
8:

9:

10:

- 14: $SLEEP(tx_time)$
- 15: end if

16: end for


Transmitter

Sending a Bit (Modulation)

To send a bit, we use a variant of **B-ASK**:

Send("0"): Do nothing for *T* seconds Send("1"): Raise amplitude for *T* seconds

Transmitter Sending Lots of Bits (Framing)

To send a sequence of bits (some data payload) we perform framing.

This is for the benefit of the receiver to perform:

- 1. Transmission detection
- 2. Synchronization
- 3. B-ASK threshold selection (what amplitude is "0"?)
 - Dynamically updated (change in distance...)

Preamble	Payload	Preamble	Payload
1010	12 bits	1010	12 bits

Transmitter

Properties & Characteristics of the Transmitter

Only has a 4KB memory footprint
No root/admin required
No APIs are used

Affects Intel and AMD architectures...
Works on Windows/Linux...

Receivers gsmem

6

Receiver About Modifying Phones...

Baseband processor:

- The connection with the cellular network is managed by a dedicated chip, called the "baseband".
- Completely separated from the main OS (e.g., Android).
- Firmware of all common brands is **closed-source**

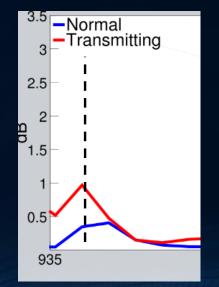
This will not deter highly motivated, and resourceful threats *...as we've seen in the past.*

Receiver About Modifying Phones...

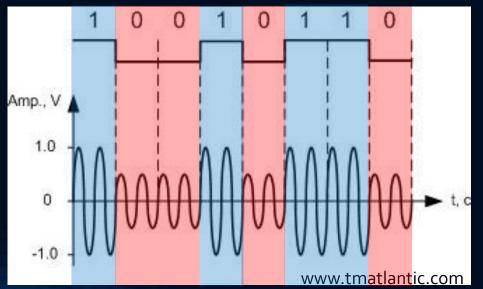
Then how did we modify the firmware?

OsmocomBB: An open source GSM baseband software implementation (2010)

• For our experiments, used the **OsmocomBB** compatible Motorola C123 GSM phone.


We note that GSMem can even work on a nine-year old, low-end mobile phone ...modern technology can go even further.

Receivers Getting the bits


A Very Simplistic Approach:

- 1. Listen on "best" **frequency**
- 2. Search for the '1010' preamble (each bit T seconds long)
 - Threshold based (dynamically changed)
- 3. Extract 12 bit payload if preamble is found

Frequency Domain

Time Domain

Receivers Getting the bits

Algorithm 2 ReceiverHandler

- 1: $dBm \leftarrow \text{MEASURE}(f_c)$
- 2: $filtered_signal \leftarrow updateMovingAverage(dBm)$
- 3: if (state = SCAN) then
- 4: $f_{c} \leftarrow \text{SCANFREQ}()$
- 5: SETSTATE(PREAMBLE)

6: end if

```
7: if (state = PREAMBLE) then
```

- 8: **if** $(IDENTIFYPREAMBLE(filtered_signal) = true)$ **then**
 - setState(RECEIVE)
- 10: end if

11: end if

9:

- 12: if (state = RECEIVE) then
- 13: $b \leftarrow \text{DEMODULATEBIT}(filtered_signal)$
- 14: bitSequence.add(b)
- 15: if (bitSequence.size%16 = 0 or SIGNALLOST(filtered_signal)) then
 16: SETSTATE(PREAMBLE)
- 17: end if
- 18: end if

Evaluation GSMEM

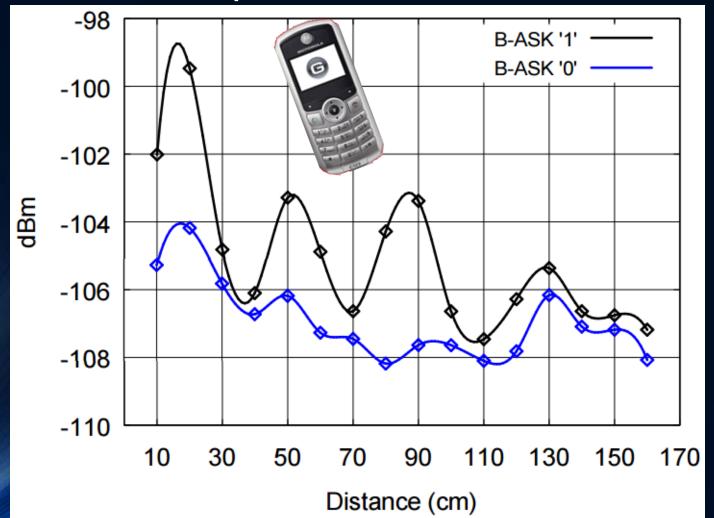
Evaluation Experiment Setup

Transmitters

	WS1	WS2	WS3
OS	Li	nux Fedora 20	
Chassis (metal)	infinity chassis	GIGABYTE Setto 1020 GZ-AX2CBS	Silverstone RL04B
CPU	Intel i7-4790	Intel i7-3770	Intel i7- 5820K
Motherboard	GIGABYTE GA- h87M-D3H	GIGABYTE H77-D3H	GIGABYTE GA-X99-UD4
RAM Type	2 x 4GB 1600MHz		4 x 4GB 2133MHz
RAM Frequencies Tested	1333/1600 MHz		1833/2133 MHz
RAM Operation Modes Tested	Single / Dual		Dual / Quad

Receivers

USRP B210

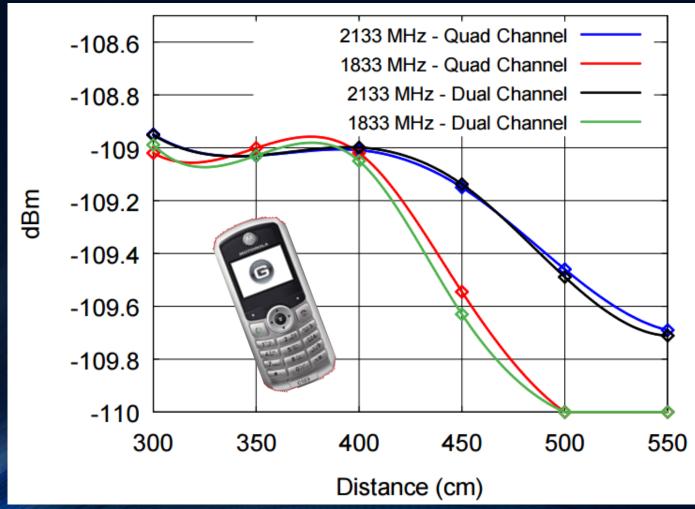


Motorola C123

Evaluation Reception Distance

Amplitude '0' vs '1'

WHY ARE YOU STANDING ON A CHAIR HOLDING A PINEAPPLE?



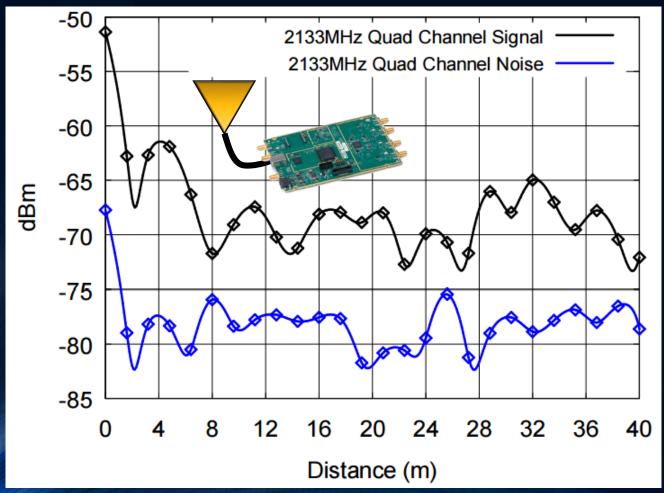
THE ERRATIC FEEDBACK, FROM A RANDOMLY-VARYING WIRELESS SIGNAL (AN MAKE YOU CRAZY.

XKCD

Evaluation Reception Distance

Delta between '0' & '1'

WHY ARE YOU STANDING ON A CHAIR HOLDING A PINEAPPLE?



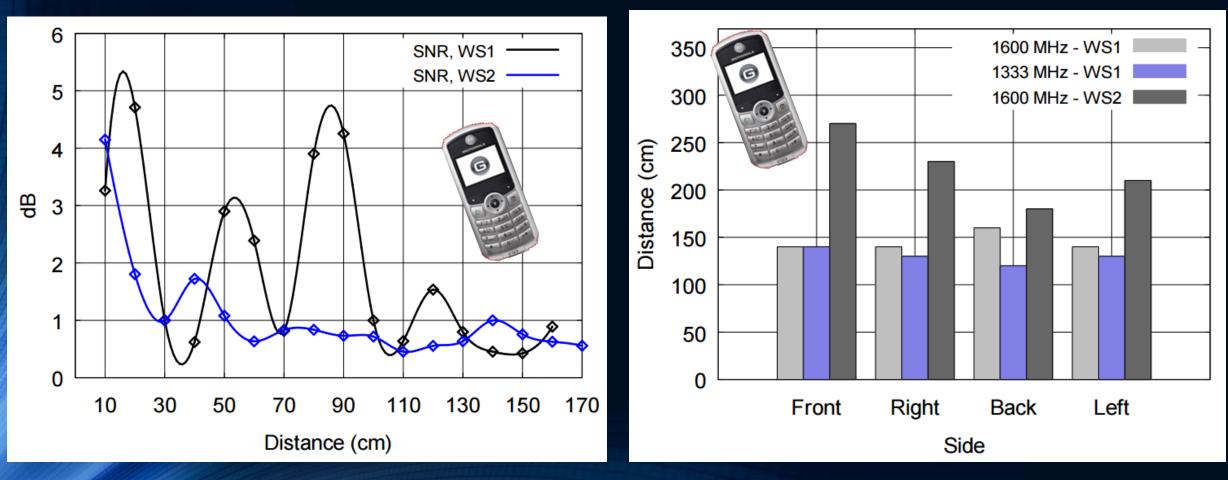
THE ERRATIC FEEDBACK FROM A RANDOMLY-VARYING WIRELESS SIGNAL (AN MAKE YOU CRAZY.

XKCD

Evaluation Reception Distance

Amplitude '0' vs '1'

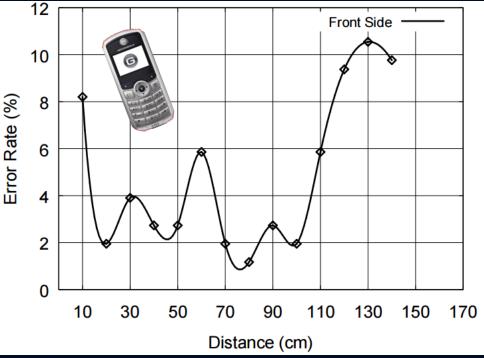
WHY ARE YOU STANDING ON A CHAIR HOLDING A PINEAPPLE?


THE ERRATIC FEEDBACK, FROM A RANDOMLY-VARYING WIRELESS SIGNAL (AN MAKE YOU CRAZY.

XKCD

Evaluation Signal to Noise Ratio (SNR)

SNR from the back of WS1 &WS2


Distance at which SNR = 0.5 dB

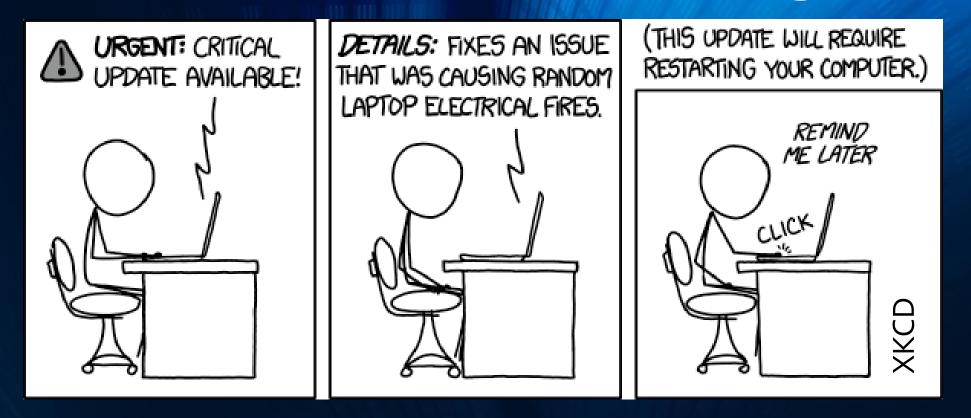
Evaluation Bit Rates

		0	
Data Len	gth(bit)	Rx Time	Rx Time
MAC Address	48	30 sec	48 ms
Plain Password	64	40 sec	64 ms
MD5	128	1.3 sec	128 ms
GPS Coordinate	128	1.3 sec	128 ms
SHA1 Hash	160	1.6 min	160 ms
Disk Encryption Key	256	2.6 min	256 ms
RSA Private Key	2048	21.3 min	2.04 sec
Fingerprint Template	2800	29.1 min	2.8 sec

Bit Error Rate (BER)

Filters, FEC and other well known methodologies can improve the BER further!

Conclusion


Summary

- It's feasible to get data out of an "Air-Gapped" network
- EMR from memory-bus can be exploited to transmit information
- Mobile devices can receive this information

Note:

- Some corporations allow simple GSM phones into restricted areas...
- Issue applies to: GSM, LTE,... bands
- GSMem is relevant to other scenarios as well

Thank you for listening!

Questions?