

Networked
computers are

insecure

and essentially all
computers are
networked.

Today
many things are
networked computers.

And attackers take control
with distressing ease.

Why so insecure?

- Faulty Design
- Buggy Specifications

. Implementation Errors
- Side-channel leaks
- Misconfiguration

. Gullible users

- Weak passwords

- Malicious insiders
- Physical security failures
. Reliance on 3rd party software
- Faulty/malicious hardware

- And the list goes on...

 Faulty Design

 Buggy Specifications
 Implementation Errors
 Side-channel leaks

 Misconfiguration X
. Gullible users »40 /

any Exploitable Vulnerabilities

Ublquftous and Pernicious

Remats code exeeutian an Wty 20, 2015
Caused by 2 bustter underflow in the Adobe Type Manager Library.

In 2M2, 3434 vulnevabilities had poblic explaits available.
4% of totsl number of viineradities Mssiing bounds check in OpenSEL allows thelt af
secret kieys, mser names and passwords instant mes=ges, smails
docaments withent leaving 2 trace.

Exploit Kits leverage software bugs

CVE2009-0R36: Buslber Cormr flow
CVE-2005-0727: Missing Bounds Check
CVE2009-1859. Itisger Owerllow
CVE-2040-0iik: Unspecified
CVE-2010-0840: Urespecitied
2UAOOBAT: Tnvalid Arvay Indie
CVE-2010-1297: Memary mormaption
CVE2010-4818: Unmarshalling bad pir
CVE2010-1885: Madhandlisg rmaps
CVE-2010-304% Butier overflow

Enabling the masses to launch permlcios attacks at scale

Vulnerability Disclosures Growth by Year
1996 to 2012

In 2012, 3,436 vulnerabilities had public exploits available.
42% of total number of vulnerabilities.

Ubiquitous and Pernicious

Microsoft Security Bulletin MS15-078 - Critical

Remote code execution on (July 20, 2015).
Caused by a buffer underflow in the Adobe Type Manager Library.

v

Missing bounds check in OpenSSL allows theft of
secret keys, user names and passwords, instant messages, emails,
documents without leaving a trace.

Exploit Kits leverage software bugs

CVE-2009-0836: Buffer Overflow
CVE-2009-0927: Missing Bounds Check
CVE-2009-1869: Integer Overflow
CVE-2010-0188: Unspecified
CVE-2010-0840: Unspecified
CVE-2010-0842: Invalid Array Index
CVE-2010-1297: Memory corruption
CVE-2010-1818: Unmarshalling bad ptr
CVE-2010-1885: Mishandling escapes
CVE-2010-2883: Buffer overflow

Enabling the masses to launch pernicious attacks at scale.

Networked
computers are

insecure

and essentially all
computers are
networked.

Hypothesis:
Formal Methods can eliminate
many exploitable vulnerabilities.

Been there, tried that, wasn't impressed.

Why is now a good time to revisit hypothesis?

A]
_ﬂarm

PE E.m

51
G|

[]
m
=l

We have found that testing the code is inadequate as a method to
find subtle errors in design, as the number of reachable states of
the code is astronomical. So we looked for a better approach.

Use of Formal Methods at Amazon Web Services, 2014

Faster Hardware. More memory.

10,000,000

Dual-Core Itanium 2 .

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

1,000,000

& Transistors (000)
@ Clock Speed (MH1)
A Power (W)

@ Perf flock (ILP)

1970 1975 1980 1985 19%0 1995 2000 2005 2010

More automation

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200
Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03

Zchaft 04
SatELite 05
Minisat 2.0 06
Picosat 07

Rsat 07

) Mini

800 ¢

09
tominisat 10

Minisat 2.2 10

CPU Time (in seconds)

Picking 80 problem point, the best
time has dropped from 1000 (2002)
to 40 seconds (2010).

80 100 160 180

Number of problems solved

More infrastructure

[A] significant part of the effort in existing projects was spent on the further
development of verification tools, on formal models for low-level
programming languages and paradigms, and on general proof libraries...
Future ef forts will be able to build on these tools and reach far-ranging
verification goals faster, better, and cheaper.

Gerwin Klein, Formal OS Verification—An Overview

V

FuzzBALLjooo

Verified
Software

Toolchain

Hypothesis:
Formal Methods can eliminate
many exploitable vulnerabilities.

Been there, tried that, wasn't impressed.

Why is now a good time to revisit hypothesis?

A]
_ﬂarm

PE E.m

51
G|

[]
m
=l

We have found that testing the code is inadequate as a method to
find subtle errors in design, as the number of reachable states of
the code is astronomical. So we looked for a better approach.

Use of Formal Methods at Amazon Web Services, 2014

Some Evidence:
DARPA's HACMS Program

Using Formal Methods to produce more secure vehicles.

The Setup Baseline Security Assessment

sl -
0 vebicles | hil Hack. Rod Team: Attacker could crash legitimate ground contral
B e A S station & hijack quadcopter in flight.

N ph

Tall oo of systesn and

Out-of-scape:
Hamdware assumed o be corredt,

tmentaf Platferms:

Ardhacopter and Boeing's Unmanmed Little Bird (LS}

The Evolving SMACCMCopter The SMACCMCopter: 18-Month Assessment

Tha SAACEMCapter e
i "

&S waypint pavigation

All oo s reciived by SMACCHOopb vadio will reach the
mutar conivlles

Fued Team:
Fuund e secerlry flaws In six weeks with full sceess $0 sowce code.

Penetration Test

ring Expert:
Thie SMACTMCaptir is peutabty the mst seeure DAV on the plass
ladde

The Setup

Program thesis:
FM can vield vehicles less susceptible to remote cyber attack.

Threat model:
No physical access, full knowledge of system and source code.

Out-of-scope:
Hardware assumed to be correct.

Experimental Platforms:
Arducopter and Boeing's Unmanned Little Bird (ULB)

Baseline Security Assessment

Red Team: Attacker could crash legitimate ground control
station & hijack quadcopter in flight.

The Evolving SMACCMCopter

Phase 1 6 12

FM Workbench

Rockwell System requirements ﬁﬁf I&‘ gﬁfe' of Verification of system requirements

Collins / UMN AADL translation, generate glue code \I

A

i > Generate executable
NICTA

NICTA RTOS ' \
> Response to DoS 4\

Galois Embedded DSL (Ivory)

Factored autopilot tasks j j

<

v

Research Monolithic Ardupilot
Vehicle Software

| HW Abstraction Layer | Glue code ‘ ‘ HAL ‘ Glue code ‘ ‘ HAL

Monolithic SW FreeRTOS
No RTOS : :

No security PX4: ARM Cortex M4 PX4: ARM Cortex M4 PX4: ARM Cortex M4
| |

Stability
Legacy
Ardupilot

FreeRTOS / eChronos NICTA eChronos

The SMACCMCopter: 18-Month Assessment

-« The SMACCMCopter flies:
- Stability control, altitude hold, directional hold, DOS detection.
- GPS waypoint navigation 80% implemented.

- Air Team proved system-wide security properties:

- The system is memory safe.

- The system ignores malformed messages.

- The system ignores non-authenticated messages.

- All “good” messages received by SMACCMCopter radio will reach the
motor controller.

- Red Team:
- Found no security flaws in six weeks with full access to source code.

- Penetration Testing Expert:

The SMACCMCopter is probably “the most secure UAV on the planet” L able
ols avat

. autopi
from

Some Evidence:
DARPA's HACMS Program

Using Formal Methods to produce more secure vehicles.

The Setup Baseline Security Assessment

sl -
0 vebicles | hil Hack. Rod Team: Attacker could crash legitimate ground contral
B e A S station & hijack quadcopter in flight.

N ph

Tall oo of systesn and

Out-of-scape:
Hamdware assumed o be corredt,

tmentaf Platferms:

Ardhacopter and Boeing's Unmanmed Little Bird (LS}

The Evolving SMACCMCopter The SMACCMCopter: 18-Month Assessment

Tha SAACEMCapter e
i "

&S waypint pavigation

All oo s reciived by SMACCHOopb vadio will reach the
mutar conivlles

Fued Team:
Fuund e secerlry flaws In six weeks with full sceess $0 sowce code.

Penetration Test

ring Expert:
Thie SMACTMCaptir is peutabty the mst seeure DAV on the plass
ladde

Formal Methods:
An Overview

Formal Method Based Tools

What are "Formal Methods"?

2

Formal methods are best described as the application of a fairly F'M:If_g‘i* ares

broad variety of theoretical computer science fundamentals . to
problems in software and hardware specification and verification,
Understanding Formal Methods, Jean-Franceis Monin, 2003

3

Autcmatk: Thearem Provers
|Ak-Ergn, VOO, 23

Broaeer Sana

Runime Moioring

"I know it when [sea it" — fustice Potter Stewart

Characteristics:
+ Based on math
+ Machine-checkable
» Capable of proving properties of code and models

Strength of Guaramtes

tedoded Checkers
ISLAM, TLE

WGP Srmbalic Exscution
BALL KL

=
- But. read _Lhe fine print! §§ Typesysems I, o
+ Assumpticns may be unreasonahble, Alitsrmitic/Unlimiled PHD Yeurs/Kloc

« Guarantees may be too weal.

Lavel of User Effort/Scalability

Survey Results on Using Formal Methods

What are "Formal Methods"?

Formal methods are best described as the application of a fairly

broad variety of theoretical computer science fundamentals ... to

problems in software and hardware specification and verification.
Understanding Formal Methods, Jean-Francois Monin, 2003

"I know it when I see it" — Justice Potter Stewart

Characteristics:
- Based on math
- Machine-checkable
- Capable of proving properties of code and models
« But, read the fine print!
- Assumptions may be unreasonable.
« Guarantees may be too weak.

Formal Method Based Tools

seL4 Microkernal (NICTA)
CompCert (INRIA)

QUARK (UCSD)
HMAC/SHA-256 (Princeton)

FSCQMIT) Interactive Proof Assistants

(ACL2, Coq, Isabelle)
OSEK-Certified Vehicle OS (China)
Nucleus Garbage Collector (Microsoft)

Functional
Correctness

Automatic Theorem Provers

()
3 (Alt-Ergo, VCC, Z3)
c Browser Sandbox (Google)
E E Verified Runtime Monitoring
S & (RockSalt)
] ~ Aviation Software (Airbus)
.— é a SSL Stack (PolarSSL)
(@) o g Mobile Applications (Facebook) Sound Static Analyzers
-ﬁ 2 (Astrée, Frama-C, INFER)
o Distributed System Protocols (Amazon)
g Device Drivers (Microsoft)
ﬁ Model Checkers
(SLAM, TLC)
i el Symbolic Execution
0B (FuzzBALL, KLEE)
[_% :06;‘ Type systems (C, Java, Haskell, ...)

Automatic/Unlimited PhD Years/Kloc
Level of User Effort/Scalability

Notional graph

Survey Results on Using Formal Methods

Quality

8% AN

D Improvement j Worsening . No effect/no data

Fig. 6. Did the use of formal techniques have an effect on time, cost, and quality?

Formal Methods:
An Overview

Formal Method Based Tools

What are "Formal Methods"?

2

Formal methods are best described as the application of a fairly F'M:If_g‘i* ares

broad variety of theoretical computer science fundamentals . to
problems in software and hardware specification and verification,
Understanding Formal Methods, Jean-Franceis Monin, 2003

3

Autcmatk: Thearem Provers
|Ak-Ergn, VOO, 23

Broaeer Sana

Runime Moioring

"I know it when [sea it" — fustice Potter Stewart

Characteristics:
+ Based on math
+ Machine-checkable
» Capable of proving properties of code and models

Strength of Guaramtes

tedoded Checkers
ISLAM, TLE

WGP Srmbalic Exscution
BALL KL

=
- But. read _Lhe fine print! §§ Typesysems I, o
+ Assumpticns may be unreasonahble, Alitsrmitic/Unlimiled PHD Yeurs/Kloc

« Guarantees may be too weal.

Lavel of User Effort/Scalability

Survey Results on Using Formal Methods

What software is
worth verifying?

- Separation Kernel: seL.4 [SOSP 2009, ToCS 2014] -a
- Hypervisor: mCertiKOS [POPL 2015]

- RTOSes: eChronos [echronos.org]

ORIENTIAS [ICECCS 2012]

- C Compiler: CompCert [POPL 2006] =

- File Systems: FSCQ [SOSP 2015], BilbyFS [OpSysRev 2014]
- Web Browser: QUARK [USENIX 2012]

- Browser Sandbox: RockSalt [PLDI 2012]

. Crypto Algorithms: SHA-256, HMAC [USENIX 2015]
AES-128, SHA-384, ECDSA(NIST P-384) [HILT 2013]
- Garbage Collector: Nucleus [PLDI 2010]

All verified to be functionally correct!

- Implemented and proven correct in Isabelle/HOL.
- Size: 10K LoC, 480K LoP
 Time to build: 13 (8) person years
- Speed: 206 vs 227 cycles in 1-way IPC fastpath
- Machine-checked theorems include
- Access-control enforcement
- Non-interference
- Compilation to binary
- IPC fast-path correctness

Available open source.

Comprehensive Formal Verification of an OS Microkernel, !
ACM Trans actions on Computer Svstern S, February PABNMEARN C:ll graph of the seLd microkernel. Vertices represent functions, and edges invocations

CompCert Verifying C Compiler

- Subset of C used by aviation industry

- Implemented and proven correct in Coq.

. Size: 42K LoC+P

- Time to build: 3 person years

 Speed: 2x speed of gcc -O0,

7% slower than gcc -O1,

12% slower than gcc -O2

- Poised to become the compiler for Airbus software.

What software is
worth verifying?

- Separation Kernel: seL.4 [SOSP 2009, ToCS 2014] -a
- Hypervisor: mCertiKOS [POPL 2015]

- RTOSes: eChronos [echronos.org]

ORIENTIAS [ICECCS 2012]

- C Compiler: CompCert [POPL 2006] =

- File Systems: FSCQ [SOSP 2015], BilbyFS [OpSysRev 2014]
- Web Browser: QUARK [USENIX 2012]

- Browser Sandbox: RockSalt [PLDI 2012]

. Crypto Algorithms: SHA-256, HMAC [USENIX 2015]
AES-128, SHA-384, ECDSA(NIST P-384) [HILT 2013]
- Garbage Collector: Nucleus [PLDI 2010]

All verified to be functionally correct!

Impediments to Using
Formal Methods

Thee Prockesn of Expertise we Required Level of Effort Parformance Consequences
sk

eeping Up

Facebook's INFER sound static analyzer processes
millices of lines of code and thousands of diffs per day,
= 4 bt Bar Pl Andeld/I05 code: hase:
- B minutes on average for sngle diffs

But, v by the absence of nall pointes exceptions T e
oo o oxkewrrors: THs i ve irving
and resource Jeaks e v e et e e £ the i

The Problem of Expertise

Formal Method Researchers (2006)

1 000
¥

%)
L.
o)
<
3]
| -
@
Q
%)
o)
oC
=
L
A
o
-
0]
fe!
=
-]
Z

Europe China Nordic Japan Others

The Required Level of Effort

Significant overhead in terms of lines of code/proof, but level of effort
is becoming a reasonable investment for certain kinds of software.

- seL.4 Separation Kernel [SOSP 2009; ToCS 2014]
10K LoC, 480K LoP; 13(8) person years

« CompCert Verifying C compiler [POPL 2006]
42K LoC+P; 3 person years

- FSCQ File System [SOSP 2015]
24K LoC+P; <5 person years

- certiKOS Hypervisor [POPL 2015]
3K LoC, 18.5K LoP; 1 person year

- SHA-256/HMAC [USENIX 2015]
407 LoC, 14.4K LoP; not reported

« Rocksalt Sandbox [PLDI 2012]
100 LoC, 10K LoP; <2 person years

« Nucleus Allocator/Garbage Collector [PLDI 2010]
6K LoP+C; 0.75 person years

« QUARK Web Browser [USENIX 2012]
5.5K LoP+C; 0.5 person years

Performance Consequences

Verified code is not intrinsically slower, but
verifying faster code can be more time consuming.

- seL.4 Separation Kernel [SOSP 2009; ToCS 2014]

206 vs 227 cycles in 1-way IPC fastpath

« CompCert Verifying C compiler [POPL 2006]

2x speed of gcc-00, 7% slower than gcec -0O1, 12% slower than gecc -O2
- FSCQ File System [SOSP 2015]

Performance roughly 80% of xvé file system.

- certiKOS Hypervisor [POPL 2015]

<2x slowdown on most Imbench benchmarks

- SHA-256/HMAC [USENIX 2015]

Performance equal to OpenSSL 0.9.1c (March 1999)

- Rocksalt Sandbox [PLDI 2012]

IM instructions/second; faster than Google's checker

- Nucleus Allocator/Garbage Collector [PLDI 2010]

“competitive performance on macro-benchmarks when compared to
native garbage collection.”

- QUARK Web Browser [USENIX 2012]

24% overhead wrt WebKit baseline on the top 10 Alexa Web sites

Keeping Up

Time to produce a proof can be serious impediment to adoption.

(Many of the artifacts we've considered lack features.)

Facebook's INFER sound static analyzer processes
millions of lines of code and thousands of diffs per day.

- 4 hours for full Android/iOS code base
» <10 minutes on average for single diffs

But, proves only the absence of null pointer exceptions
and resource leaks.

The Fine Print

All proofs come with assumptions.
Violate those assumptions and all bets are off.

John Regehr et al found 325 bugs in various C compilers,
including CompCert [PLDI 2011].

CompCert bugs were in:
- the unverified front end (subsequently fixed & verified)
- a hardware model

"The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are absent. ...
CompCert is the only compiler we have tested for which Csmith
cannot find wrong-code errors. This is not for lack of trying:
we have devoted about six CPU-years to the task.

Impediments to Using
Formal Methods

Thee Prockesn of Expertise we Required Level of Effort Parformance Consequences
sk

eeping Up

Facebook's INFER sound static analyzer processes
millices of lines of code and thousands of diffs per day,
= 4 bt Bar Pl Andeld/I05 code: hase:
- B minutes on average for sngle diffs

But, v by the absence of nall pointes exceptions T e
oo o oxkewrrors: THs i ve irving
and resource Jeaks e v e et e e £ the i

Formal Methods:
Mot just for implementation bugs!

Farmal methods can help with other securlty challerges as well:
n

+ Use static ar
formal weril

+ Cotmpesition er
F k 1

abiies scallig

Tactic libwartes and SMT/SAT sciver IntegTation
F5001 Nig

Om-Going Research & Challenges

& and validating madels of rmal
Liriis, B

e
T AFls, POSIH faces

- IncTeasing auto
« Sealing

- Praof engineering

= Integrating with nermal development processes
- Getting buy-in/adoption & training

ocl

- Handling cancurrency

Formal Methods:
Not just for implementation bugs!

Formal methods can help with other security challenges as well:
- Faulty design
Ex: Amazon Web Services use of TLA+
- Buggy specifications
- Ex: Rockwell Collins detecting unencrypted comm channel
- Side-channel information leaks
Ex: NICTA analysis of seL4
- Dependence on 3rd party software

Lessons Learned

- Don't verify existing code artifacts

seL4, CompCert, FSCQ, certiKOS, Rocksalt, Nucleus, QUARK
- Use static analyzers to eliminate obvious bugs before starting
formal verification.

« Don't verify all code:

Secure essential infrastructure & contain the rest.

QUARK, Verve/Nucleus, Rocksalt

« Use DSLs to generate code and correctness proofs

Rocksalt, Ivory/Tower, SpiralGen, BilbyS

- Composition enables scaling

Facebook INFER; UC-KLEE, Rockwell Collins Workbench;
mCertiKOS

- Automation is essential:

Tactic libraries and SMT/SAT solver integration

FSCQ, Nucleus, mCertiKOS

On-Going Research & Challenges

- Producing and validating models of real systems
x86, LLVM, Linux, Browser APIs, POSIX interfaces
- Increasing automation

- Scaling

- Proof engineering

- Integrating with normal development processes

- Getting buy-in/adoption & training

"Exhaustively testable pseudo-code”

|Using Formal Methods at Amazon Web Services]

- Handling concurrency

Formal Methods:
Mot just for implementation bugs!

Farmal methods can help with other securlty challerges as well:
n

+ Use static ar
formal weril

+ Cotmpesition er
F k 1

abiies scallig

Tactic libwartes and SMT/SAT sciver IntegTation
F5001 Nig

Om-Going Research & Challenges

& and validating madels of rmal
Liriis, B

e
T AFls, POSIH faces

- IncTeasing auto
« Sealing

- Praof engineering

= Integrating with nermal development processes
- Getting buy-in/adoption & training

ocl

- Handling cancurrency

Within Reach?

- Critical parts of critical systems are built out of
verified components & their composition is verified.
- Buggy software is no longer an easy attack vector.

- Black Hat is reduced to non-scalable attack vectors:

verified components & their composition is verified.
- Buggy software is no longer an easy attack vector.

- Black Hat is reduced to non-scalable attack vectors:

Princeton

MIT
Darren Cofer

Drew Dean
SRI

Dan Guido
Trail of Bits
Joe Hendrix
Galois

Thanks to:

Andrew Appel

Adam Chlipala

Rockwell Collins

John Launchbury
DARPA

Gerwin Klein
NICTA

Gary McGraw
Cigital

Greg Morrisett
Cornell
Aaron Tomb
Galois

Mike Walker
DARPA

