Man vs. Machine: Adversarial Detection of Malicious Crowdsourcing Workers

Gang Wang, Tianyi Wang, Haitao Zheng, Ben Y. Zhao

UC Santa Barbara
gangw@cs.ucsb.edu
Machine Learning for Security

- Machine learning (ML) to solve security problems
 - Email spam detection
 - Intrusion/malware detection
 - Authentication
 - Identifying fraudulent accounts (Sybils) and content
- **Example:** ML for Sybil detection in social networks
Adversarial Machine Learning

• Key vulnerabilities of machine learning systems
 – ML models derived from fixed datasets
 – Assuming similar distribution of training and real-world data

• Strong adversaries in ML systems
 – Aware of usage, reverse engineering ML systems
 – Adaptive evasion, temper with the trained model

• Practical adversarial attacks
 – What are the practical constrains for adversaries?
 – With constrains, how effective are adversarial attacks?
Context: Malicious Crowdsourcing

• New threat: malicious crowdsourcing = crowdturfing
 – Hiring a large army of real users for malicious attacks
 – Fake customer reviews, rumors, targeted spam
 – Most existing defenses fail against real users (CAPTCHA)
Online Crowdturfing Systems

- Online crowdturfing systems (services)
 - Connect customers with online users willing to spam for money
 - Sites located across the globe, e.g. China, US, India

- Crowdturfing in China
 - Largest crowdturfing sites: ZhuBaJie (ZBJ) and SanDaHa (SDH)
 - Million-dollar industry, tens of millions of tasks finished
Machine Learning vs. Crowdturfing

• Machine learning to detect crowdturfing workers
 – Simple methods usually fail (e.g. CAPTCHA, rate limit)
 – Machine learning: more sophisticated modeling on user behaviors
 o “You are how you click” [USENIX’13]

• Perfect context to study adversarial machine learning
 1. Highly adaptive workers seeking evasion
 2. Crowdturfing site admins tamper with training data by changing all worker behaviors
Goals and Questions

- **Our goals**
 - Develop defense against crowdturfing on *Weibo* (Chinese Twitter)
 - Understand the impact of adversarial countermeasures and the robustness of machine learning classifiers

- **Key questions**
 - What ML algorithms can accurately detect crowdturfing workers?
 - What are possible ways for adversaries to evade classifiers?
 - Can adversaries attack ML models by tampering with training data?
Outline

• Motivation
• Detection of Crowdturfing
• Adversarial Machine Learning Attacks
• Conclusion
Methodology

- Detect crowdturf workers on Weibo

- Adversarial machine learning attacks
 - Evasion Attack: workers evade classifiers
 - Poisoning Attack: crowdturfing admins tamper with training data
Ground-truth Dataset

• Crowdturfing campaigns targeting Weibo
 – Two largest crowdturfing sites ZBJ and SDH
 – Complete historical transaction records for 3 years (2009-2013)
 – 20,416 Weibo campaigns: > 1M tasks, 28,947 Weibo accounts

• Collect Weibo profiles and their latest tweets
 – **Workers:** 28K Weibo accounts used by ZBJ and SDH workers
 – **Baseline users:** snowball sampled 371K baseline users
Features to Detect Crowd-workers

• Search for behavioral features to detect workers

• Observations
 – Aged, well established accounts
 – Balanced follower-followeree ratio
 – Using cover traffic

• Final set of useful features: 35
 – Baseline profile fields (9)
 – User interaction (comment, retweet) (8)
 – Tweeting device and client (5)
 – Burstiness of tweeting (12)
 – Periodical patterns (1)

Active at posting but have less bidirectional interactions

Task-driven nature
Performance of Classifiers

• Building classifiers on ground-truth data
 – Random Forests (RF)
 – Decision Tree (J48)
 – SVM radius kernel (SVMr)
 – SVM polynomial (SVMp)
 – Naïve Bayes (NB)
 – Bayes Network (BN)

• Classifiers dedicated to detect “professional” workers
 – Workers who performed > 100 tasks
 – Responsible for 90% of total spam
 – More accurate to detect the professionals ➞ 99% accuracy
Outline

• Motivation

• Detection of Crowdturfing

• Adversarial Machine Learning Attacks
 – Evasion attack
 – Poisoning attack

• Conclusion
Model Training

Training Data

Training (e.g. SVM)

Detection

Classifier

Evasion Attack
Attack #1: Adversarial Evasion

- **Individual workers** as adversaries
 - Workers seek to evade a classifier by mimicking normal users
 - Identify the key set of features to modify for evasion

- Attack strategy depends on worker’s **knowledge** on classifier
 - Learning algorithm, feature space, training data

- What knowledge is practically available? How does different knowledge level impact workers’ evasion?
A Set of Evasion Models

• Optimal evasion scenarios
 – **Per-worker optimal:** Each worker has perfect knowledge about the classifier
 – **Global optimal:** knows the direction of the boundary
 – **Feature-aware evasion:** knows feature ranking

• **Practical** evasion scenario
 – Only knows normal users statistics
 – Estimate which of their features are most “abnormal”
Evasion Attack Results

<table>
<thead>
<tr>
<th>Worker Evasion Rate (%)</th>
<th>Number of Features Altered</th>
</tr>
</thead>
<tbody>
<tr>
<td>J48</td>
<td>100</td>
</tr>
<tr>
<td>SVMp</td>
<td>100</td>
</tr>
<tr>
<td>RF</td>
<td>100</td>
</tr>
<tr>
<td>SVMr</td>
<td>100</td>
</tr>
</tbody>
</table>

- Evasion is highly effective with **perfect** knowledge, but less effective in practice

- **No single classifier is robust against evasion.** The key is to limit adversaries’ knowledge
Model Training

Training Data → Training (e.g. SVM) → Classifier

Detection

Poison Attack
Attack #2: Poisoning Attack

- **Crowdturfing site admins** as adversaries
 - Highly motivated to protect their workers, centrally control workers
 - Tamper with the training data to manipulate model training

- **Two practical poisoning methods**
 - **Inject** mislabeled samples to training data ⇒ wrong classifier
 - **Alter** worker behaviors uniformly by enforcing system policies ⇒ harder to train accurate classifiers
Injecting Poison Samples

- Injecting benign accounts as “workers” into training data
 - Aim to trigger false positives during detection

10% of poison samples ➔ boost false positives by 5%

J48-Tree is more vulnerable than others

Poisoning attack is highly effective
More accurate classifier can be more vulnerable
Discussion

• Key observations
 – Accurate machine learning classifiers can be highly vulnerable
 – No single classifier excels in all attack scenarios, Random Forests and SVM are more robust than Decision Tree.
 – Adversarial attack impact highly depends on adversaries’ knowledge

• Moving forward: improve robustness of ML classifiers
 – Multiple classifier in one detector (ensemble learning)
 – Adversarial analysis in unsupervised learning
Thank You!
Questions?