
Dynamic Hooks
Hiding Control Flow Changes within Non-Control Data

Sebastian Vogl∗, Robert Gawlik†, Behrad Garmany†,
Thomas Kittel∗, Jonas Pfoh∗, Claudia Eckert∗, Thorsten Holz†

∗Chair for IT-Security †Horst Görtz Institute for IT-Security
Technische Universität München Ruhr-Universität Bochum

Munich, Germany Bochum, Germany

Dynamic Hooks 1 / 25

Background & Motivation
▸ Hooks

▸ In general, malware needs to intercept events within the system

▸ Event interception requires us to divert the control flow at runtime
▸ This is accomplished by installing hooks into the control flow

Dynamic Hooks 2 / 25

Background & Motivation
▸ Hooks

▸ In general, malware needs to intercept events within the system
▸ Event interception requires us to divert the control flow at runtime

▸ This is accomplished by installing hooks into the control flow

Dynamic Hooks 2 / 25

Background & Motivation
▸ Hooks

▸ In general, malware needs to intercept events within the system
▸ Event interception requires us to divert the control flow at runtime
▸ This is accomplished by installing hooks into the control flow

Dynamic Hooks 2 / 25

Background & Motivation
▸ Achilles Heel: Hooks

▸ Types
▸ Change code (Code Hooks)

▸ Change function pointer (Data Hooks)
▸ Researchers have presented effective detection mechanisms for

both types

Dynamic Hooks 3 / 25

Background & Motivation
▸ Achilles Heel: Hooks

▸ Types
▸ Change code (Code Hooks)
▸ Change function pointer (Data Hooks)

▸ Researchers have presented effective detection mechanisms for
both types

Dynamic Hooks 3 / 25

Background & Motivation
▸ Achilles Heel: Hooks

▸ Types
▸ Change code (Code Hooks)
▸ Change function pointer (Data Hooks)

▸ Researchers have presented effective detection mechanisms for
both types

Dynamic Hooks 3 / 25

Background & Motivation
▸ Achilles Heel: Hooks

▸ Types
▸ Change code (Code Hooks)
▸ Change function pointer (Data Hooks)

▸ Researchers have presented effective detection mechanisms for
both types

⇒ How can we evade existing detection mechanisms?

Dynamic Hooks 3 / 25

Background & Motivation
▸ Hook Detection

Assumption
▸ Hooks must target persistent control data

Dynamic Hooks 4 / 25

Background & Motivation
▸ Hook Detection

Assumption
▸ Hooks must target persistent control data

Dynamic Hooks: Evade existing mechanisms by targeting
transient control data

Dynamic Hooks 4 / 25

Outline

1 Background & Motivation

2 Dynamic Hooks

3 Experiments

4 Limitations

5 Conclusion

Dynamic Hooks 5 / 25

Dynamic Hooks
▸ Idea

▸ Apply exploitation techniques to the problem of hooking

▸ Modify non-control data to trigger vulnerabilities
▸ Change control flow dynamically at runtime

Dynamic Hooks 6 / 25

Dynamic Hooks
▸ Idea

▸ Apply exploitation techniques to the problem of hooking
▸ Modify non-control data to trigger vulnerabilities

▸ Change control flow dynamically at runtime

Dynamic Hooks 6 / 25

Dynamic Hooks
▸ Idea

▸ Apply exploitation techniques to the problem of hooking
▸ Modify non-control data to trigger vulnerabilities
▸ Change control flow dynamically at runtime

Dynamic Hooks 6 / 25

Dynamic Hooks
▸ Idea

▸ Apply exploitation techniques to the problem of hooking
▸ Modify non-control data to trigger vulnerabilities
▸ Change control flow dynamically at runtime

⇒ Target transient control data

Dynamic Hooks 6 / 25

Dynamic Hooks
▸ Idea

▸ Apply exploitation techniques to the problem of hooking
▸ Modify non-control data to trigger vulnerabilities
▸ Change control flow dynamically at runtime

⇒ Target transient control data
⇒ No evident connection between hook and control flow change

Dynamic Hooks 6 / 25

Dynamic Hooks
▸ Comparison to Traditional Exploits

We already control the target application

▸ We are not affected by most protection mechanisms
▸ We can modify internal data structures and attack internal

functions
▸ We can prepare our shellcode in advance

Dynamic Hooks 7 / 25

Dynamic Hooks
▸ Comparison to Traditional Exploits

We already control the target application
▸ We are not affected by most protection mechanisms

▸ We can modify internal data structures and attack internal
functions

▸ We can prepare our shellcode in advance

Dynamic Hooks 7 / 25

Dynamic Hooks
▸ Comparison to Traditional Exploits

We already control the target application
▸ We are not affected by most protection mechanisms
▸ We can modify internal data structures and attack internal

functions

▸ We can prepare our shellcode in advance

Dynamic Hooks 7 / 25

Dynamic Hooks
▸ Comparison to Traditional Exploits

We already control the target application
▸ We are not affected by most protection mechanisms
▸ We can modify internal data structures and attack internal

functions
▸ We can prepare our shellcode in advance

Dynamic Hooks 7 / 25

Dynamic Hooks
▸ Comparison to Traditional Exploits

We already control the target application
▸ We are not affected by most protection mechanisms
▸ We can modify internal data structures and attack internal

functions
▸ We can prepare our shellcode in advance

⇒ Much stronger attacker model

Dynamic Hooks 7 / 25

Dynamic Hooks
▸ Example: Linux

1 struct l i s t _ h e ad
2 {
3 struct l i s t _ h e ad * next ;
4 struct l i s t _ h e ad * prev ;
5 } ;
6

7 s t a t i c void l i s t _ d e l (struct l i s t _ h e ad * en t ry)
8 {
9 entry −>next−>prev = entry −>prev ;

10 entry −>prev−>next = entry −>next ;
11 }

Dynamic Hooks 8 / 25

Dynamic Hooks
▸ Example: Linux

1 struct l i s t _ h e ad
2 {
3 struct l i s t _ h e ad * next ;
4 struct l i s t _ h e ad * prev ;
5 } ;
6

7 s t a t i c void l i s t _ d e l (struct l i s t _ h e ad * en t ry)
8 {
9 entry->next->prev = entry->prev;

10 entry −>prev−>next = entry −>next ;
11 }

write-where-what
▸ [next + 8] = prev

Dynamic Hooks 9 / 25

Dynamic Hooks
▸ Example: Linux

1 struct l i s t _ h e ad
2 {
3 struct l i s t _ h e ad * next ;
4 struct l i s t _ h e ad * prev ;
5 } ;
6

7 s t a t i c void l i s t _ d e l (struct l i s t _ h e ad * en t ry)
8 {
9 entry −>next−>prev = entry −>prev ;

10 entry->prev->next = entry->next;
11 }

write-where-what
▸ [next + 8] = prev
▸ [prev] = next

Dynamic Hooks 10 / 25

Dynamic Hooks
▸ Example: Linux

Dynamic Hooks 11 / 25

Dynamic Hooks
▸ Example: Linux

Dynamic Hooks 12 / 25

Dynamic Hooks
▸ Suited Vulnerabilities

▸ Any vulnerability can be used to implement a dynamic hook.

▸ We focus on 8-byte writes

Dynamic Hooks 13 / 25

Dynamic Hooks
▸ Suited Vulnerabilities

▸ Any vulnerability can be used to implement a dynamic hook.
▸ We focus on 8-byte writes

Dynamic Hooks 13 / 25

Dynamic Hooks
▸ Suited Vulnerabilities

▸ Any vulnerability can be used to implement a dynamic hook.
▸ We focus on 8-byte writes

mov [rax] , rbx

Dynamic Hooks 14 / 25

Dynamic Hooks
▸ Types

▸ Dynamic control hooks

▸ Dynamic data hooks

Dynamic Hooks 15 / 25

Dynamic Hooks
▸ Types

▸ Dynamic control hooks
▸ Dynamic data hooks

Dynamic Hooks 15 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ Symbolic Execution

Dynamic Hooks 16 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ mov [<destination>], <source>

▸ backwards breadth-first search on the assembly-level
▸ extract path if destination and source originate from a global

variable
▸ Implementation: Based on IDA Pro

▸ Symbolic Execution

Dynamic Hooks 16 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ mov [<destination>], <source>
▸ backwards breadth-first search on the assembly-level

▸ extract path if destination and source originate from a global
variable

▸ Implementation: Based on IDA Pro

▸ Symbolic Execution

Dynamic Hooks 16 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ mov [<destination>], <source>
▸ backwards breadth-first search on the assembly-level
▸ extract path if destination and source originate from a global

variable

▸ Implementation: Based on IDA Pro

▸ Symbolic Execution

Dynamic Hooks 16 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ mov [<destination>], <source>
▸ backwards breadth-first search on the assembly-level
▸ extract path if destination and source originate from a global

variable
▸ Implementation: Based on IDA Pro

▸ Symbolic Execution

Dynamic Hooks 16 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ Symbolic Execution

▸ transform extracted path into VEX IR (pyvex)
▸ map VEX statements into Z3 expressions
▸ check satisfiability of conditional branches
▸ generate detailed information about controlled registers

Dynamic Hooks 16 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ Symbolic Execution

▸ transform extracted path into VEX IR (pyvex)

▸ map VEX statements into Z3 expressions
▸ check satisfiability of conditional branches
▸ generate detailed information about controlled registers

Dynamic Hooks 16 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ Symbolic Execution

▸ transform extracted path into VEX IR (pyvex)
▸ map VEX statements into Z3 expressions

▸ check satisfiability of conditional branches
▸ generate detailed information about controlled registers

Dynamic Hooks 16 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ Symbolic Execution

▸ transform extracted path into VEX IR (pyvex)
▸ map VEX statements into Z3 expressions
▸ check satisfiability of conditional branches

▸ generate detailed information about controlled registers

Dynamic Hooks 16 / 25

Dynamic Hooks
▸ Finding Dynamic Hooks

▸ Program Slicing
▸ Symbolic Execution

▸ transform extracted path into VEX IR (pyvex)
▸ map VEX statements into Z3 expressions
▸ check satisfiability of conditional branches
▸ generate detailed information about controlled registers

Dynamic Hooks 16 / 25

Outline

1 Background & Motivation

2 Dynamic Hooks

3 Experiments

4 Limitations

5 Conclusion

Dynamic Hooks 17 / 25

Experiments
▸ Finding Dynamic Hooks

OS Instructions 8-byte moves Slices Paths

Linux 1,976,441 42,130 1753 566
Windows 1,330,791 26,694 5450 379

Prototype Limitations

▸ Program Slicing: no memory model
⇒ 79,853 paths ignored

▸ Symbol Execution: supports only a subset of x86 instruction set
⇒ 5857 slices ignored

Dynamic Hooks 18 / 25

Experiments
▸ Finding Dynamic Hooks

OS Instructions 8-byte moves Slices Paths

Linux 1,976,441 42,130 1753 566
Windows 1,330,791 26,694 5450 379

Prototype Limitations
▸ Program Slicing: no memory model
⇒ 79,853 paths ignored

▸ Symbol Execution: supports only a subset of x86 instruction set
⇒ 5857 slices ignored

Dynamic Hooks 18 / 25

Experiments
▸ Finding Dynamic Hooks

OS Instructions 8-byte moves Slices Paths

Linux 1,976,441 42,130 1753 566
Windows 1,330,791 26,694 5450 379

Prototype Limitations
▸ Program Slicing: no memory model
⇒ 79,853 paths ignored

▸ Symbol Execution: supports only a subset of x86 instruction set
⇒ 5857 slices ignored

Dynamic Hooks 18 / 25

Experiments
▸ Automated Path Extraction

Implemented three prototypes of dynamic hooks
1 Control Hook: Interception of system calls (Linux)
2 Data Hook: Backdoor (Linux)
3 Control Hook: Interception of process termination (Windows)

Dynamic Hooks 19 / 25

Outline

1 Background & Motivation

2 Dynamic Hooks

3 Experiments

4 Limitations

5 Conclusion

Dynamic Hooks 20 / 25

Limitations

▸ Vulnerability may place restrictions on the hook

Dynamic Hooks 21 / 25

Limitations
▸ Automated Path Extraction

Dynamic Hooks 22 / 25

Limitations

▸ Vulnerability may place restrictions on the hook
▸ Coverage?

▸ Side effects?

Dynamic Hooks 23 / 25

Limitations

▸ Vulnerability may place restrictions on the hook
▸ Coverage?
▸ Side effects?

Dynamic Hooks 23 / 25

Outline

1 Background & Motivation

2 Dynamic Hooks

3 Experiments

4 Limitations

5 Conclusion

Dynamic Hooks 24 / 25

Conclusion

Dynamic Hooks

Pros

▸ evade existing detection mechanisms
▸ are more powerful than existing hooking mechanisms
▸ are more difficult to detect

Cons

▸ are more complex than traditional hooks
▸ are more fragile than traditional hooks

Dynamic Hooks 25 / 25

Conclusion

Dynamic Hooks

Pros

▸ evade existing detection mechanisms
▸ are more powerful than existing hooking mechanisms
▸ are more difficult to detect

Cons

▸ are more complex than traditional hooks
▸ are more fragile than traditional hooks

Dynamic Hooks 25 / 25

Conclusion

Dynamic Hooks

Pros
▸ evade existing detection mechanisms

▸ are more powerful than existing hooking mechanisms
▸ are more difficult to detect

Cons

▸ are more complex than traditional hooks
▸ are more fragile than traditional hooks

Dynamic Hooks 25 / 25

Conclusion

Dynamic Hooks

Pros
▸ evade existing detection mechanisms
▸ are more powerful than existing hooking mechanisms

▸ are more difficult to detect

Cons

▸ are more complex than traditional hooks
▸ are more fragile than traditional hooks

Dynamic Hooks 25 / 25

Conclusion

Dynamic Hooks

Pros
▸ evade existing detection mechanisms
▸ are more powerful than existing hooking mechanisms
▸ are more difficult to detect

Cons

▸ are more complex than traditional hooks
▸ are more fragile than traditional hooks

Dynamic Hooks 25 / 25

Conclusion

Dynamic Hooks

Pros
▸ evade existing detection mechanisms
▸ are more powerful than existing hooking mechanisms
▸ are more difficult to detect

Cons

▸ are more complex than traditional hooks
▸ are more fragile than traditional hooks

Dynamic Hooks 25 / 25

Conclusion

Dynamic Hooks

Pros
▸ evade existing detection mechanisms
▸ are more powerful than existing hooking mechanisms
▸ are more difficult to detect

Cons
▸ are more complex than traditional hooks

▸ are more fragile than traditional hooks

Dynamic Hooks 25 / 25

Conclusion

Dynamic Hooks

Pros
▸ evade existing detection mechanisms
▸ are more powerful than existing hooking mechanisms
▸ are more difficult to detect

Cons
▸ are more complex than traditional hooks
▸ are more fragile than traditional hooks

Dynamic Hooks 25 / 25

	Background & Motivation
	Hooks
	Achilles Heel: Hooks
	Hook Detection

	Dynamic Hooks
	Idea
	Comparison to Traditional Exploits
	Example: Linux
	Suited Vulnerabilities
	Suited Vulnerabilities
	Types
	Finding Dynamic Hooks

	Experiments
	Finding Dynamic Hooks
	Automated Path Extraction

	Limitations
	Conclusion

