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Background & Motivation
▸ Hooks

▸ In general, malware needs to intercept events within the system

▸ Event interception requires us to divert the control flow at runtime
▸ This is accomplished by installing hooks into the control flow
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Background & Motivation
▸ Achilles Heel: Hooks

▸ Types
▸ Change code (Code Hooks)
▸ Change function pointer (Data Hooks)

▸ Researchers have presented effective detection mechanisms for
both types

⇒ How can we evade existing detection mechanisms?
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Background & Motivation
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Background & Motivation
▸ Hook Detection

Assumption
▸ Hooks must target persistent control data

Dynamic Hooks: Evade existing mechanisms by targeting
transient control data
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Dynamic Hooks
▸ Idea

▸ Apply exploitation techniques to the problem of hooking

▸ Modify non-control data to trigger vulnerabilities
▸ Change control flow dynamically at runtime
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Dynamic Hooks
▸ Idea

▸ Apply exploitation techniques to the problem of hooking
▸ Modify non-control data to trigger vulnerabilities
▸ Change control flow dynamically at runtime

⇒ Target transient control data
⇒ No evident connection between hook and control flow change
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Dynamic Hooks
▸ Comparison to Traditional Exploits

We already control the target application

▸ We are not affected by most protection mechanisms
▸ We can modify internal data structures and attack internal

functions
▸ We can prepare our shellcode in advance
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Dynamic Hooks
▸ Comparison to Traditional Exploits

We already control the target application
▸ We are not affected by most protection mechanisms
▸ We can modify internal data structures and attack internal

functions
▸ We can prepare our shellcode in advance

⇒ Much stronger attacker model
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Dynamic Hooks
▸ Example: Linux

1 struct l i s t _ h e ad
2 {
3 struct l i s t _ h e ad * next ;
4 struct l i s t _ h e ad * prev ;
5 } ;
6

7 s t a t i c void l i s t _ d e l ( struct l i s t _ h e ad * en t ry )
8 {
9 entry −>next−>prev = entry −>prev ;

10 entry −>prev−>next = entry −>next ;
11 }
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2 {
3 struct l i s t _ h e ad * next ;
4 struct l i s t _ h e ad * prev ;
5 } ;
6

7 s t a t i c void l i s t _ d e l ( struct l i s t _ h e ad * en t ry )
8 {
9 entry->next->prev = entry->prev;

10 entry −>prev−>next = entry −>next ;
11 }

write-where-what
▸ [next + 8] = prev
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Dynamic Hooks
▸ Example: Linux

1 struct l i s t _ h e ad
2 {
3 struct l i s t _ h e ad * next ;
4 struct l i s t _ h e ad * prev ;
5 } ;
6

7 s t a t i c void l i s t _ d e l ( struct l i s t _ h e ad * en t ry )
8 {
9 entry −>next−>prev = entry −>prev ;

10 entry->prev->next = entry->next;
11 }

write-where-what
▸ [next + 8] = prev
▸ [prev] = next
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Dynamic Hooks
▸ Suited Vulnerabilities

▸ Any vulnerability can be used to implement a dynamic hook.

▸ We focus on 8-byte writes
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Dynamic Hooks
▸ Suited Vulnerabilities

▸ Any vulnerability can be used to implement a dynamic hook.
▸ We focus on 8-byte writes

mov [ rax ] , rbx
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Dynamic Hooks
▸ Types

▸ Dynamic control hooks

▸ Dynamic data hooks
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▸ transform extracted path into VEX IR (pyvex)
▸ map VEX statements into Z3 expressions
▸ check satisfiability of conditional branches
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Experiments
▸ Finding Dynamic Hooks

OS Instructions 8-byte moves Slices Paths

Linux 1,976,441 42,130 1753 566
Windows 1,330,791 26,694 5450 379

Prototype Limitations

▸ Program Slicing: no memory model
⇒ 79,853 paths ignored

▸ Symbol Execution: supports only a subset of x86 instruction set
⇒ 5857 slices ignored
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Experiments
▸ Automated Path Extraction

Implemented three prototypes of dynamic hooks
1 Control Hook: Interception of system calls (Linux)
2 Data Hook: Backdoor (Linux)
3 Control Hook: Interception of process termination (Windows)
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Limitations

▸ Vulnerability may place restrictions on the hook
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Conclusion

Dynamic Hooks

Pros

▸ evade existing detection mechanisms
▸ are more powerful than existing hooking mechanisms
▸ are more difficult to detect

Cons

▸ are more complex than traditional hooks
▸ are more fragile than traditional hooks
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