Towards Detecting Anomalous User Behavior in Online Social Networks

Bimal Viswanath

M. Ahmad Bashir, Mark Crovella, Saikat Guha, Krishna Gummadi, Balachander Krishnamurthy, Alan Mislove

Usenix Security’14
Service abuse in social networks today

Several black-market services are available today to
Manipulate content ratings
Manipulate popularity of a user

Like spammers try to boost popularity of Facebook pages
Service abuse in social networks today

Service abuse can have significant economic consequences

Social advertising services also seem to be targeted by attackers

TCTV

Startup Claims 80% Of Its Facebook Ad Clicks Are Coming From Bots
Posted Jul 30, 2012 by Colleen Taylor (@loyalelectron)

Business Insider

Yet Another Company Claims Facebook Ad Clicks Are Mostly From Bots

International New York Times

When Advertising on Facebook Can Be a Waste of Money
Our goal

Detect misbehaving identities in a social networking service
Suspend the misbehaving user or nullify their actions
Adversarial cycle today

“Facebook Immune System”, SNS’10
Limitations of existing approaches

Relies on detecting specific known patterns of misbehavior

Attackers mutate and use diverse strategies today:
- Fake accounts are created for Sybil attacks
- Some real users tend to collude to boost each other’s popularity
- Real user accounts are compromised for better social reach

Existing approaches are vulnerable against an adaptive attacker
Idea: Use anomaly detection on user behavior
Our approach at a high level

We build an Anomaly classifier
 That learns normal patterns of user behavior
 Any behavior that deviates significantly from normal is anomalous

Our technique is unsupervised
 Learning only requires behavior of unlabeled random sample of users

This approach has the potential to catch diverse attacker strategies
 Because we do not require any a priori knowledge of attacker strategy
Contributions

An approach to identify anomalous user behavior
Without requiring any a priori knowledge of attacker strategy

Detect like spammers on Facebook who use diverse strategies:
Using Sybil accounts
Compromised accounts
Colluding accounts

Detect fraudulent clicks in the Facebook social ad platform
Observe that a significant fraction of clicks look anomalous
Rest of the talk

1. Methodology

2. Detecting like spammers on Facebook

3. Detecting click-spam on Facebook ads

4. Corroboration by Facebook
Learning normal patterns of behavior

For our approach to work:
 We have to learn normal patterns of user behavior

If user behavior is too noisy - i.e., everyone behaves very differently
 Attacker can potentially hide in the noise and evade detection

We want to see if there are a few patterns of behavior that are dominant among normal users
Why would this work against attackers?

To evade detection, attacker would have to behave normally
Will have to limit himself to the few patterns of normal behavior
This constrains the attacker and bounds the scale of the attack
Why would this work against attackers?

To evade detection, attacker would have to behave normally
Will have to limit himself to the few patterns of normal behavior
This constrains the attacker and bounds the scale of the attack

| User’s like behavior: Distribution of #page categories liked |
Why would this work against attackers?

To evade detection, attacker would have to behave normally
Will have to limit himself to the few patterns of normal behavior
This constrains the attacker and bounds the scale of the attack

User’s like behavior: Distribution of #page categories liked

<table>
<thead>
<tr>
<th>Category</th>
<th>#likes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Football</td>
<td>2</td>
</tr>
<tr>
<td>Cricket</td>
<td>3</td>
</tr>
<tr>
<td>Photography</td>
<td>10</td>
</tr>
</tbody>
</table>

Normal user
Why would this work against attackers?

To evade detection, attacker would have to behave normally.
Will have to limit himself to the few patterns of normal behavior.
This constrains the attacker and bounds the scale of the attack.

User’s like behavior: Distribution of #page categories liked

<table>
<thead>
<tr>
<th>Category</th>
<th>#likes</th>
<th>Category</th>
<th>#likes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Football</td>
<td>2</td>
<td>Body building</td>
<td>30</td>
</tr>
<tr>
<td>Cricket</td>
<td>3</td>
<td>Dolls</td>
<td>32</td>
</tr>
<tr>
<td>Photography</td>
<td>10</td>
<td>Rock climbing</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beauty care</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medicine</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motorcycle</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Normal user

Anomalous user
Challenges in modeling behavior

How do you model complex user behavior in social networks?

User behavior is high dimensional
 Number of likes for different page categories
 Time-series of number of likes per day

User behavior can change over time

User behavior can be noisy
Anomaly detection using PCA

Number of likes on category 1

Number of likes on category 2
Anomaly detection using PCA
Anomaly detection using PCA

Number of likes on category 1

Number of likes on category 2

Normal users

Anomalous user
Anomaly detection using PCA
Anomaly detection using PCA

PC-1
(Normal space)

PC-2
(Residual space)
Anomaly detection using PCA

If y_{res} is unusually high, user is anomalous.
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant? Can be answered by looking at variance captured by each PC
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant?
Can be answered by looking at variance captured by each PC

Facebook like behavior defined over 224 page categories
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant?
Can be answered by looking at variance captured by each PC

Facebook like behavior defined over 224 page categories
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant? Can be answered by looking at variance captured by each PC.

Top 5 components account for more than 85% of data variance.

Each of the remaining components capture very small variance.
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant?
Can be answered by looking at variance captured by each PC
Capturing normal behavior patterns

Are there a few patterns of behavior that are dominant?
Can be answered by looking at variance captured by each PC

Yelp user behavior
Rest of the talk

1. Methodology

2. Detecting like spammers on Facebook

3. Detecting click-spam on Facebook ads

4. Corroboration by Facebook
Data collected

Training data:
Random users: 12k random users sampled from Facebook

Testing data:

<table>
<thead>
<tr>
<th>Identity type</th>
<th>#Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-market</td>
<td>3.2k</td>
</tr>
<tr>
<td>Compromised</td>
<td>1k</td>
</tr>
<tr>
<td>Colluding</td>
<td>900</td>
</tr>
<tr>
<td>Normal</td>
<td>1.2k</td>
</tr>
</tbody>
</table>
Detected anomalous behavior

<table>
<thead>
<tr>
<th>Identity type</th>
<th>Likes flagged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-market</td>
<td>99%</td>
</tr>
<tr>
<td>Compromised</td>
<td>64%</td>
</tr>
<tr>
<td>Colluding</td>
<td>92%</td>
</tr>
</tbody>
</table>

When tested on normal users, we flag 3.3% of them (false positives)
Rest of the talk

1. Methodology
2. Detecting like spammers on Facebook
3. Detecting click-spam on Facebook ads
4. Corroboration by Facebook
Click-spam on Facebook

Advertisers lose money on spam clicks
 They might lose confidence in the advertising platform
 Affects the sustainability of the social networking service

Preliminary experiment to understand click-spam in Facebook ads
 Set up a real ad and a bluff ad targeting users in USA
Click-spam on Facebook

Advertisers lose money on spam clicks
They might lose confidence in the advertising platform
Affects the sustainability of the social networking service

Preliminary experiment to understand click-spam in Facebook ads
Set up a real ad and a bluff ad targeting users in USA

Real ad
Click-spam on Facebook

Advertisers lose money on spam clicks
They might lose confidence in the advertising platform
Affects the sustainability of the social networking service

Preliminary experiment to understand click-spam in Facebook ads
Set up a real ad and a bluff ad targeting users in USA
Click-spam on Facebook

Advertisers lose money on spam clicks
They might lose confidence in the advertising platform
Affects the sustainability of the social networking service

Preliminary experiment to understand click-spam in Facebook ads
Set up a real ad and a bluff ad targeting users in USA

Both bluff and real ad performed nearly identically!
Experiment to detect click-spam

Step 1. Create ad to get likes to our Facebook page
Facebook then targets users who are more likely to like the ad/page
Experiment to detect click-spam

Step 2. Apply anomaly classifier to users who clicked (liked) on the ad
Experiment to detect click-spam

We set up 10 such ad campaigns targeting 7 countries
USA, UK, Australia, Egypt, Philippines, Malaysia, India
Click-spam identified

1,867/2,767 (67%) users who click on ads look anomalous

8 out of 10 campaigns have a majority of clicks that look anomalous

US, UK campaigns have more than 39% anomalous clicks
Rest of the talk

1. Methodology
2. Detecting like spammers on Facebook
3. Detecting click-spam on Facebook ads
4. Corroboration by Facebook
We analyzed the state of flagged users and their likes in June 2014

Users:
Most of the flagged users still exist
92% of black-market and 93% of ad users are still alive

Likes:
Confirms click-spam findings (where there was no ground-truth)
More than 85% of all likes by ad users were removed after 4 months

But Facebook’s system is still behind on removing a lot of misbehavior
Over 48% of likes by black-market users still exist after 10 months
Conclusion

Service abuse is a huge problem in social networks today
Attackers use diverse strategies and also tend to adapt

We propose an unsupervised anomaly detection scheme
PCA serves as a nice tool to model behavior and detect anomalous ones

We evaluate our technique on extensive ground-truth data of anomalous behavior

We apply our approach to detect click-spam in a social ad platform