
Precise client-side protection against
DOM-based Cross-Site Scripting

USENIX Security 2014, San Diego
Ben Stock (University of Erlangen-Nuremberg)
Sebastian Lekies, Tobias Müller, Patrick Spiegel, Martin Johns (SAP AG)

DOM-based Cross-Site Scripting

● All kinds of XSS vulnerabilities that are purely
inside client-side code
●  both "reflected" (e.g. extracting part of the URL)
●  ... and stored (e.g. localStorage)

2

Source: http://blogs.sfweekly.com/thesnitch/
cookie_monster.jpg

SotA in XSS filtering: XSSAuditor

● Deployed in all WebKit/Blink-based browsers
● Located inside the HTML parser

●  whenever dangerous element/attribute is found,
search for "payload" in request

3

DOM-based XSS in the wild and
effectiveness of countermeasures

Finding DOMXSS at scale (CCS 2013)

● using byte-level taint tracking in Chromium
●  precise source information for every character
●  patched sinks (e.g. document.write or eval)

● Chrome extension to crawl given set of Web sites
●  and act as interface between taint engine and backend

● and an exploit generator
●  using precise taint information
●  and HTML and JavaScript syntax rules
●  to generate exploits fully automatic

5

DOMXSS in the wild

● CCS 2013
●  Alexa Top5k, one level down from homepage
●  è 480 domains vulnerable

● This talk (moar crawling power)
●  Alexa Top10k, two levels down from homepage
●  è 958 domains with 1,602 unique vulnerabilities
●  with disabled XSSAuditor

6

Bypassing the XSSAuditor

7

Bypassable exploits

●  776 out of 958 domains bypassable
●  1,169 out of 1,602 vulnerabilities bypassable

! State of the Art XSS filter cannot protect
against DOM-based XSS*

* was not necessarily designed that way, though

8

Our proposed solution

The hard life of a reflected XSS filter

● XSS abstracted: user-provided data ends up
being interpreted as code
●  same for SQLi, CMDi, ..

● XSS filter's problem: find this code among
all the other code
●  string matching to approximate data flow

10

Our proposal

● Approximation unnecessary imprecise for local
flows
●  we can use taint tracking

● XSS boils down to being JavaScript execution
●  build filter into JavaScript engine

● XSS means that data ends up being interpreted
as code
●  allow user-provided data only to generate Literals

(Numeric, String, Boolean)
●  never anything else

11

Our proposal exemplified

var userinput = location.hash.slice(1)!

eval("var a='" + userinput + "';")!
!

!

!

12

Userinput: userdata!

Declaration!

 Identifier: a!

 StringLiteral: 'userdata'!

13

var a='userdata';!

Userinput: userdata'; alert(1); //!

Declaration!

 Identifier: a!

 StringLiteral: 'userdata'!

ExpressionStmt!

 Type: CallExpression!

 Callee:!

 Identifier: alert!

 Arguments:!

 Literal: 1.0!

14

var a='userdata';!
alert(1); //'!

Policies

● No tainted value may generate anything other
than a Literal in the JavaScript tokenizer

● No element that can reference an external
resource may have tainted origin(e.g. script.src
or embed.src)
●  enforced in the HTML parser and DOM bindings
●  single exception to rule: SAME origin as current page

15

Evaluation

False negatives

● Took known vulnerabilities
●  ... with matching exploit URLs

● Disabled the XSSAuditor
●  ... to avoid interference

● Caught every exploit

17

False positives

● Compatibility crawl of Alexa Top10k with policies
in place
●  981,453 URLs, 9,304,036 frames

18

Blocking	

component	

	

documents	

JavaScript	
 5,979	

HTML	
 8,805	

DOM	
 API	
 182	

Sum	
 14,966	
 (0.016%)	

False positives

● Compatibility crawl of Alexa Top10k with policies
in place
●  981,453 URLs, 9,304,036 frames

19

Blocking	

component	

	

documents	

	

domains	

JavaScript	
 5,979	
 50	

HTML	
 8,805	
 73	

DOM	
 API	
 182	
 60	

Sum	
 14,966	
 (0.016%)	
 183	
 (1.83%)	

False positives

● Compatibility crawl of Alexa Top10k with policies
in place
●  981,453 URLs, 9,304,036 frames

20

Blocking	

component	

	

documents	

	

domains	

exploitable	

domains	

JavaScript	
 5,979	
 50	
 22	

HTML	
 8,805	
 73	
 60	

DOM	
 API	
 182	
 60	
 8	

Sum	
 14,966	
 (0.016%)	
 183	
 (1.83%)	
 90	

Performance

● Evaluation using standard benchmarks
●  Dromaeo, Octane, Kraken, Sunspider

● Two modes (benchmarks usually don't use
tainted values)
●  normal operation
●  all strings tainted

● Overhead between 7 and 17%
●  optimization possible

21

Conclusion

Conclusion

● SotA filters can be bypassed for DOM-based XSS
● We propose filter inside JavaScript parser

●  using precise taint information, allowing only tainted
Literals

●  No false negatives
●  Low false positives

●  "XSS by design"
●  untaint API built in

●  performance impact exists
●  optimizations possible
●  deployable next to the Auditor if optimized

23

Thank you

@kcotsneb

ben@kittenpics.org

https://kittenpics.org

Questions?

