
Optimizing Seed Selection for Fuzzing
USENIX Security 2014

Alexandre Rebert
Sang Kil Cha

Thanassis Avgerinos
Jonathan Foote

David Warren
Gustavo Grieco
David Brumley

Optimizing Seed Selection for Fuzzing

2

Fuzzer

Bugs

ParametersProgram

Fuzzing = Bug Finding

Optimizing Seed Selection for Fuzzing

3

Fuzzer

Bugs

SeedProgram

BFF, FileFuzz, jsfunfuzz, Peach, Sage, ZZUF

and many more …

Seed = Well-Structured Input

4

11010
11010
01…





Seed Selection Challenge

5

Fuzzer

Bugs

SeedProgram

Given:
• Program
• Fuzzer
• Time limit T

Seed Selection Challenge

6

Fuzzer

Bugs

PDF File

Goal: find as many bugs
as possible

Given:
• Program
• Fuzzer
• Time limit T

You can run the fuzzer
with any seed for any
arbitrary time period

(total time ≤ T)

Research Questions

7

Universe of
PDF Files

Fuzzer

Bugs

PDF File

Research Questions

8

Universe of
PDF Files

Question #1
How to select seeds to use?

Fuzzer

Bugs

PDF File

Set of PDF Files

Research Questions

9

Universe of
PDF Files

Fuzzer

Bugs

PDF File

Set of PDF Files

Question #2
How to schedule seeds?

Can we obtain the maximum
of bugs that can be found

for a given set of seeds?

#bugs found =
#unique crashes

identified by stackhash

Q1: Seed Selection

10

Universe of
PDF Files

Question #1
How to select seeds to use?

Fuzzer

Bugs

PDF File

Set of PDF Files

Find a Set of Seeds
Maximizing Code Coverage

• Miller reports an 1% increase in code
coverage increases the percentage of bugs
found by 0.92%[1]

• Peach uses code coverage to select seeds[2]

11

[1] Fuzz by Number, CanSecWest 2008
[2] http://peachfuzzer.com

Minimal Set-Cover Problem

http://peachfuzzer.com/

Minimal Set-Cover Problem (MSCP)

12

S1

{2}

1

3

2

4

S2

{1}

S3

{3,4}

S4

{1,2}

Minimal Set-Cover Problem (MSCP)

13

S1

{2}

1

3

2

4

S2

{1}

S3

{3,4}

S4

{1,2}

Minimal Set-Cover Problem (MSCP)

14

S1

{2}

1

3

2

4

S2

{1}

S3

{3,4}

S4

{1,2}

MSCP is NP-Hard, But

We use a greedy polynomial-time

approximation algorithm

• Unweighted MinSet: MSCP

• Time MinSet: Weighted MSCP with exec. time

• Size MinSet: Weighted MSCP with seed file size

15

More details in the paper

• Peach Set: derived from peach fuzzer

Comparing Seed Selection Algorithms

16

4,912,142 seed files (≈ 6TB)
(274 file extensions)

Randomly selected
100 seeds per file extension

Universe of
PDF Files

Fuzzer

Bugs

PDF File

Set of PDF Files

We do this for every
applications (10 apps.)

#Seeds after Seed Selection
(From 100 Seeds)

17

0

5

10

15

20

25

30

35

40

minset sminest tminset peach

Q2: Optimal Seed Scheduling

18

Universe of
PDF Files

Fuzzer

Bugs

PDF File

Set of PDF Files

Question #2
For a given set of seeds,

what is the maximum # of
bugs that can be found within

a time limit?

We introduce a methodology
of evaluating seed selection

algorithms

Compute Optimal Scheduling
from Collected Ground Truth Data

19

Fuzzer

(B1, S1, T1), (B2, S1, T2), …

bug
ID

seed
ID

time
stamp(), ,

Per-Seed
Ground Truth Collection

Ground Truth = a sequence of

Compute Optimal Scheduling
from Collected Ground Truth Data

20

…
For all the seeds
in the universe

Finding an optimal scheduling is NP-hard

(B1, S1, T1), (B2, S1, T2), …

(B4, S2, T1), (B2, S3, T2), …

(B4, S2, T1), (B2, S3, T2), …

⇒ ILP (Integer Linear Programming)

ILP Formulation Example

• Fuzzing 1 program with 2 seed files (S1 and S2)
• 1 minute fuzzing run with each seed
• 2 bugs found in total (B1 and B2)

21

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

S1

S2

Steps in ILP Formulation

1. Define the goal

2. Define ILP variables

3. Define constraints over the variables

22

Maximize the # of Bugs

Introducing Crash Indicator Variable ci,j

23

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

c1,1 c1,2

c2,1
c2,2

If we select S1 for 15 sec., then c1,1= 0, c1,2= 0
If we select S2 for 40 sec., then c2,1 = 1, c2,2 = 0

S1

S2

ci,j = jth crash in the ith seed

Introducing Time Variable ti,j

24

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

c1,1 c1,2

c2,1
c2,2

S1

S2

t1,1 t1,2

t2,1
t2,2

ti,j = jth time interval of the ith seed

Introducing Bug Indicator Variable bx

25

If we select S2 for 40 sec., b2 = 1

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

c1,1 c1,2

c2,1
c2,2

S1

S2

t1,1 t1,2

t2,1
t2,2

Constraint 1: Order of Crashes

26

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

c1,1 c1,2

c2,1
c2,2

S1

S2

Preserve
the order of crashes

t1,1 t1,2

t2,1
t2,2

Constraint 2: Time Limit

27

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

c1,1 c1,2

c2,1
c2,2

S1

S2

t1,1 t1,2

t2,1
t2,2

Do not exceed
the time limit

Constraint 3: Crash ⇒ Bug

28

If a crash is found, then the corresponding bug is found

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

c1,1 c1,2

c2,1
c2,2

S1

S2

t1,1 t1,2

t2,1
t2,2

Constraint 4: Bug ⇒ Crash

29

If a bug is found, then
one of the corresponding crashes is found

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

c1,1 c1,2

c2,1
c2,2

S1

S2

t1,1 t1,2

t2,1
t2,2

Final ILP Formulation

30

maximize # of bugs found

#Seeds after Seed Selection
(From 100 Seeds)

31

0

5

10

15

20

25

30

35

40

minset sminset tminset peach

0

50

100

150

200

250

300

350

minset sminest tminset peach

of Maximum Attainable Bugs
using 20 Seeds over 10 Apps.

32

#
 o

f
M

ax
im

u
m

 A
tt

ai
n

ab
le

 B
u

gs

Comparing Seed Selection Algorithms
Against Random Set

• Random Set: pick k seeds at random

• Unweighted MinSet: MSCP

• Time MinSet: WMSCP with execution time

• Size MinSet: WMSCP with seed file size

• Peach Set: derived from peach fuzzer

33

Simulated random set 1000 times per program

Compare # of bugs found per k

Unweighted MinSet Performs Best

34

0

5

10

15

20

25

30

1 5 10 15 20 25 30 35

peach tminset sminset minset random

Unweighted MinSet is
always better than random

#Seeds

#
 o

f
M

ax
im

u
m

 A
tt

ai
n

ab
le

 B
u

gs

More on the Paper

• Detailed seed selection algorithms

• Detailed ILP formulation

• More evaluation

35

Conclusion

• We formalized, implemented, and tested a
number of seed selection algorithms for
fuzzing

• We introduced a methodology for
evaluating seed selection algorithms for
fuzzing

36

Thank You

Sang Kil Cha

sangkilc@cmu.edu

Code & Data will be soon available:

http://security.ece.cmu.edu/coverset

37

mailto:sangkilc@cmu.edu
http://security.ece.cmu.edu/coverset

38

