Optimizing Seed Selection for Fuzzing
USENIX Security 2014

Alexandre Rebert
Sang Kil Cha
Thanassis Avgerinos
Jonathan Foote
David Warren
Gustavo Grieco
David Brumley

Optimizing Seed Selection for Fuzzing

Fuzzing = Bug Finding

Program Parameters

3y I

[e]
¥

Bugs

Optimizing Seed Selection for Fuzzing

BFF, FileFuzz, jsfunfuzz, Peach, Sage, ZZUF
and many more ...

Program Seed

3y I

[Fuzzer J

g

Bugs

Seed = Well-Structured Input

Seed Selection Challenge

Glven:

* Program

* Fuzzer

e Time limit T

Program Seed

3y I

[Fuzzer J

g

% Bugs

Seed Selection Challenge

You can run the fuzzer _

with any seed for any [REA{2E

arbitrary time period ™ I g (a0
(total time < T) * Fuzzer

e Timelimit T

PDF File

\ 4

[Fuzzer J

Goal: find as many bugs

‘ as possible
Bugs

Research Questions

Universe of
PDF Files

Research Questions

Universe of
PDF Files

[Set of PDF Files]

4

PDF File

\ 4

[Fuzzer]

g

Bugs

Question #1
How to select seeds to use?

Research Questions

Universe of
PDF Files

‘ Question #2
[Set of PDF Files] How to schedule seeds?
‘ Can we obtain the maximum
_ # of bugs that can be found
PDille for a given set of seeds?

#bugs found =
Fuzzer #unique crashes

g

identified by stackhash

Bugs

Q1: Seed Selection

Universe of Question #1
PDF Files
How to select seeds to use?

[Set of PDF Files]

4

PDF File

\ 4

[Fuzzer]

g

Bugs

10

Find a Set of Seeds
Maximizing Code Coverage

* Miller reports an 1% increase in code

coverage increases the percentage of bugs
found by 0.92%!1!

* Peach uses code coverage to select seeds!?!

Minimal Set-Cover Problem

[1] Fuzz by Number, CanSecWest 2008
[2] http://peachfuzzer.com

11

http://peachfuzzer.com/

Minimal Set-Cover Problem (MSCP)

—————————

| |
A {2 0 A
S S,

I T
A B4 A {12}
1 2 L e
) _S_3 ______) Sy
))
3 4

Minimal Set-Cover Problem (MSCP)

———————————————————

S]_ _______ SZ ______
{,ﬂ_ii ______ \: FOF)
A B4an A {12
1 2 | : -
— J '_53 _____ ' S4
N)
3 4

Minimal Set-Cover Problem (MSCP)

A {2} A {1}
Sy S,
om, G (mm
o (34N 1A {120
1 2 l | — |
- 03 _____. oS4 '
(o (4

MSCP is NP-Hard, But

We use a greedy polynomial-time
approximation algorithm

* Unweighted MinSet: MSCP
* Time MinSet: Weighted MSCP with exec. time

* Size MinSet: Weighted MSCP with seed file size
* Peach Set: derived from peach fuzzer

More details in the paper

15

Universe of

PDF Files 4,912,142 seed files (* 6TB)

(274 file extensions)

Randomly selected

‘ 100 seeds per file extension
PDF File
‘ We do this for every

applications (10 apps.)
Fuzzer

g

Bugs

16

40

35

30

25

20

15

10

#Seeds after Seed Selection

(From 100 Seeds)

minset

sminest

tminset

peach

17

Q2: Optimal Seed Scheduling

Universe of
PDF Files

‘ Question #2
[Set of PDF Files] For a given set of seeds,
‘ what is the maximum # of
_ bugs that can be found within
PDille a time limit?

Fuzzer
We introduce a methodology

‘ of evaluating seed selection
algorithms

Bugs

18

Compute Optimal Scheduling
from Collected Ground Truth Data

=
2

[] Per-Seed
Fuzzer _
Ground Truth Collection

4

Ground Truth = a sequence of (

bug seed time)
ID’ ID ’stamp

(B4, S, T,), (B, S, T,), ..

19

Compute Optimal Scheduling
from Collected Ground Truth Data

4 (Bp 51/ T1)»

For all the seeds < (B4’ SZ’ T1):

in the universe

[Bz, S].’ Tz), oy

Finding an optimal scheduling is NP-hard

= ILP (Integer Linear Programming)

[BZ, SB, TZ), (]

_(B,, S,, T)), (B,, S3, T,), ...

20

ILP Formulation Example

30 sec. 30 sec.
51 >(By, 54, 30) > (B4, 54, 60)
15 ses 40 sec.
S, 2> (R..S,, 15) > (B, S,, 55)

* Fuzzing 1 program with 2 seed files (S, and S,)
* 1 minute fuzzing run with each seed
* 2 bugs found in total (B, and B,)

21

Steps in ILP Formulation

Define the goal Maximize the # of Bugs

. Define ILP variables

. Define constraints over the variables

22

Introducing Crash Indicator Variable c; ;

30 sec. \ 30 sec ’

51 >(By, S, 30) —> (B, Sy, 60)

Sz 15 sec. s (R:_ g:— 15) 40 sec. s (Bl, SZ, 55)

Co1 e

c;; = j* crash in the i* seed

If we select S, for 15 sec,, thenc,;=0,¢;,=0
If we select S, for 40 sec, thenc,;=1,¢,,=0

23

Introducing Time Varlable t.;

BRI At

Ci11 C1,2
30 sec. \ 30 sec. /
1 >(B1' Sl' 30) > (Bl' Sl' 60)
Sz 15 sec. s (BZ, 82, 15) 40 sec. s (Bl; Sz; 55)
\ \ ~

C
C 2,2

t;; = j™ time interval of the i*! seed

24

Introducing Bug Indicator Variable b,

ERELN £
' C11 7 C12
30 sec. \ 30 sec. / ’

S >(B,, S, 30) > (B,, S, 60)
Sz 15 sec. > (B, S, 15) 40 sec. s (Bl, SZ, 55)

/ \ \ ™~

Crq t 2,2
t2,1 ’ 2,2

b]=1iff 34,) :[u(ci;) = x]

[f we select S, for 40 sec.,b, =1

25

Constraint 1: Order of Crashes

ERELN b

30 sec.

30 sec.
S, >(B,, S;, 30) > (B, S}, 60)

Sz 15 sec. S (Bz, SZ, 15) 40 sec. S (Bl, Sz, 55)

/ \ \ ~

C
2,1 t,,

¢ Cro
21

Preserve
V-ci,m < Cij
] the order of crashes

26

Constraint 2: Time Limit

'\ 118 2 712

30 sec. 30 sec.
S, =—=2(R,,5,,30) > (By, S, 60)
Sz 15 sec. . |. 40 sec. S (Bl, Sz, 55)
\ \ ~

C
C 2,2

Do not exceed
the time limit

27

Constraint 3: Crash = Bug

ERELN \ b ey

30 sec. 30 sec.
s, ——[B,s;, 30)——— (B,, S,, 60)
Sz 15 sec. S (B2, SZ, 15) 40 sec. S (Bl, Sz, 55)
/ \ \ ~

C
Co1 2,2

)4 L2

:VJ/ Ci,j < bx where !,L(Cijj) =X

If a crash is found, then the corresponding bug is found

Constraint 4: Bug = Crash

ERELN \ b ey

30 sec. 30 sec.
S, >(B,, S,, 30) > (B,, S;, 60)

Sz 15 sec. S (B2, SZ, 15) 40 sec. S (Bl; Sz; co

~

C
Cr1 2,2

)4 L2

\V/.bx < Zcijj where H(Cijj) =X
X —
l,]

If a bug is found, then
one of the corresponding crashes is found

29

Final ILP Formulation

maximize

subject to

) b, maximize # of bugs found

\V/ ci.j < by where l(c; ;) =
i,Jj

V. by < Y cij where i(c; ;) =

X .
LJ

30

40

35

30

25

20

15

10

#Seeds after Seed Selection
(From 100 Seeds)

1TH

minset sminset tminset peach

31

of Maximum Attainable Bugs
using 20 Seeds over 10 Apps.

)

w
ul
o

w
o
o

(]
Ul
-}

200

150

100

Ul
o

)

of Maximum Attainable Bugs

minset sminest tminset peach

32

Comparing Seed Selection Algorithms
Against Random Set

 Random Set: pick k seeds at random
* Unweighted MinSet: MSCP
* Time MinSet: WMSCP with execution time

* Size MinSet: WMSCP with seed file size
* Peach Set: derived from peach fuzzer

Compare # of bugs found per k

Simulated random set 1000 times per program

33

Unweighted MinSet Performs Best

-=peach -e-tminset —+-sminset =sminset ==wrandom

w
o

(]
Ul

()
o

—_
-

Unweighted MinSet is
always better than random

ul

of Maximum Attainable Bugs

1 5 10 15 20 25 30 35
H#HSeeds

34

More on the Paper

* Detailed seed selection algorithms
* Detailed ILP formulation

e More evaluation

35

Conclusion

 We formalized, implemented, and tested a
number of seed selection algorithms for
fuzzing

* We introduced a methodology for
evaluating seed selection algorithms for
fuzzing

36

Thank You

Sang Kil Cha
sangkilc@cmu.edu

Code & Data will be soon available:
http://security.ece.cmu.edu/coverset

37

mailto:sangkilc@cmu.edu
http://security.ece.cmu.edu/coverset

38

