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Optimizing Seed Selection for Fuzzing
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Fuzzing = Bug Finding
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BFF, FileFuzz, jsfunfuzz, Peach, Sage, ZZUF

and many more …



Seed = Well-Structured Input

4

11010
11010
01…







Seed Selection Challenge
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Given:
• Program
• Fuzzer
• Time limit T



Seed Selection Challenge
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Fuzzer

Bugs

PDF File

Goal: find as many bugs 
as possible

Given:
• Program
• Fuzzer
• Time limit T

You can run the fuzzer
with any seed for any 
arbitrary time period

(total time ≤ T)



Research Questions
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PDF Files

Question #1
How to select seeds to use?
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Research Questions
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PDF Files

Fuzzer

Bugs

PDF File

Set of PDF Files

Question #2
How to schedule seeds?

Can we obtain the maximum
# of bugs that can be found 

for a given set of seeds?

#bugs found =
#unique crashes

identified by stackhash



Q1: Seed Selection
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Find a Set of Seeds
Maximizing Code Coverage

• Miller reports an 1% increase in code 
coverage increases the percentage of bugs 
found by 0.92%[1]

• Peach uses code coverage to select seeds[2]
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[1] Fuzz by Number, CanSecWest 2008
[2] http://peachfuzzer.com

Minimal Set-Cover Problem

http://peachfuzzer.com/


Minimal Set-Cover Problem (MSCP)
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MSCP is NP-Hard, But

We use a greedy polynomial-time

approximation algorithm

• Unweighted MinSet: MSCP

• Time MinSet: Weighted MSCP with exec. time

• Size MinSet: Weighted MSCP with seed file size
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More details in the paper

• Peach Set: derived from peach fuzzer



Comparing Seed Selection Algorithms
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4,912,142 seed files (≈ 6TB)
(274 file extensions)

Randomly selected
100 seeds per file extension

Universe of
PDF Files

Fuzzer

Bugs

PDF File

Set of PDF Files

We do this for every 
applications (10 apps.)



#Seeds after Seed Selection
(From 100 Seeds)
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Q2: Optimal Seed Scheduling
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Question #2
For a given set of seeds,

what is the maximum # of 
bugs that can be found within 

a time limit?

We introduce a methodology 
of evaluating seed selection 

algorithms



Compute Optimal Scheduling 
from Collected Ground Truth Data
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Fuzzer

(B1, S1, T1), (B2, S1, T2), … 

bug
ID

seed
ID

time
stamp( ), ,

Per-Seed
Ground Truth Collection

Ground Truth = a sequence of 



Compute Optimal Scheduling 
from Collected Ground Truth Data
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…
For all the seeds
in the universe

Finding an optimal scheduling is NP-hard

(B1, S1, T1), (B2, S1, T2), …

(B4, S2, T1), (B2, S3, T2), …

(B4, S2, T1), (B2, S3, T2), …

⇒ ILP (Integer Linear Programming)



ILP Formulation Example

• Fuzzing 1 program with 2 seed files (S1 and S2)
• 1 minute fuzzing run with each seed
• 2 bugs found in total (B1 and B2)
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15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

S1

S2



Steps in ILP Formulation

1. Define the goal

2. Define ILP variables

3. Define constraints over the variables
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Maximize the # of Bugs



Introducing Crash Indicator Variable ci,j

23

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

c1,1 c1,2

c2,1
c2,2

If we select S1 for 15 sec., then c1,1= 0, c1,2= 0
If we select S2 for 40 sec., then c2,1 = 1, c2,2 = 0

S1

S2

ci,j = jth crash in the ith seed



Introducing Time Variable ti,j
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ti,j = jth time interval of the ith seed



Introducing Bug Indicator Variable bx
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If we select S2 for 40 sec., b2 = 1
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Constraint 1: Order of Crashes
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Constraint 2: Time Limit
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Do not exceed
the time limit



Constraint 3: Crash ⇒ Bug
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If a crash is found, then the corresponding bug is found
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Constraint 4: Bug ⇒ Crash
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If a bug is found, then
one of the corresponding crashes is found

15 sec.

(B1, S1, 30) (B1, S1, 60)

(B2, S2, 15) (B1, S2, 55)

30 sec. 30 sec.

40 sec.

c1,1 c1,2

c2,1
c2,2

S1

S2

t1,1 t1,2

t2,1
t2,2



Final ILP Formulation
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maximize # of bugs found



#Seeds after Seed Selection
(From 100 Seeds)
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# of Maximum Attainable Bugs
using 20 Seeds over 10 Apps.

32

#
 o

f 
M

ax
im

u
m

 A
tt

ai
n

ab
le

 B
u

gs



Comparing Seed Selection Algorithms
Against Random Set

• Random Set: pick k seeds at random

• Unweighted MinSet: MSCP

• Time MinSet: WMSCP with execution time

• Size MinSet: WMSCP with seed file size

• Peach Set: derived from peach fuzzer
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Simulated random set 1000 times per program

Compare # of bugs found per k



Unweighted MinSet Performs Best
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More on the Paper

• Detailed seed selection algorithms

• Detailed ILP formulation

• More evaluation
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Conclusion

• We formalized, implemented, and tested a 
number of seed selection algorithms for 
fuzzing

• We introduced a methodology for 
evaluating seed selection algorithms for 
fuzzing
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Thank You

Sang Kil Cha

sangkilc@cmu.edu

Code & Data will be soon available:

http://security.ece.cmu.edu/coverset
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