
Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu
Purdue University

Zhiqiang Lin
UT Dallas

Zhendong Su
UC Davis

X-Force: Force-Executing Binary Programs for Security
Applications

Outline

 Background & Motivation

 Design

 Implementation Challenges

 Evaluation

 Conclusion

Background & Motivation

 Binary analysis

 The analysis on compiled binary software

 No source code & symbolic information

 More challenging than software analysis using source code

 Control flow graph, variable type

 Binary analysis has many security applications

 Exposing malware behavior by constructing CFG/CG

 Identifying and patching security vulnerabilities

Background & Motivation

 Existing approaches

 Static analysis (IDA)

 Examining the code without executing it

 Dynamic analysis (Valgrind, PIN)

 Testing and evaluation of an application during runtime

 Symbolic analysis (BitBlaze, S2E)

 Determine what inputs cause each part of the program to
execute

Good
Coverage

Packing &
Obfuscation

Precision Scalability

Static

Dynamic

Symbolic

Outline

 Background & Motivation

 Design

 Implementation Challenges

 Evaluation

 Conclusion

Design

 What is X-Force?

 Dynamic analysis engine that forces a binary to execute

 Provide no inputs or any environment setup

 Explore different paths by simply switching the outcome of
predicates

Example -Hijack the name resolution for a specific domain

Reads an integer x

If condition satisfied,
a DNS object is
allocated to p

If CODE_RED bit set is in
x, get the domain name

for the object in p
Other objects are put
into the hash table

Fetch an object using
key y==x

If an object is fetched
successfully, malicious

payload triggered

Example – Static Analysis

Object fetched at 13
is from either 8 or 11

Truth: Only
from 8

Example – Dynamic Analysis

If CODE_RED bit is not set
in x, an object with key x
is not put into hash table

Fetching object at line
13 fails

Malicious payload is
not triggered

Example – Symbolic Analysis

Model x as symbolic
variable, hidden
payload may be

reached File processing requires
tremendous work due to

nontrivial file size and
format

Example – X-Force

Provides random
inputs

Assume all 3
predicates go to

false branch

Leads to a non-
interesting path

Example – X-Force

Flip predicates
one by one
Flip predicate at
line 4 first, line 5

gets covered

Leads to a non-
interesting path

Example – X-Force

Flip predicate at
line 6

Not covered,
p = NULL

Memory write
exception, crash!

Crash-free Execution

 Ideas on memory access exception

 Skip it?

 A lot of following exceptions, cascading effect on program
state corruption

 Lose heap data

 Allocate a piece of memory on demand

 It is not sufficient by just fixing the corrupted pointer itself

 Fix the other correlated pointers

Example – Dataflow

Flip predicate at
line 6

Not covered,
p = NULL

Memory write
exception, crash!

Crash-free Execution

 Observations

 Some pointers are correlated

 Correlated pointers are only linearly correlated

 No multiplication/division

 Solution – Linear set tracing

1. Memories/registers that are linearly correlated are put into a set

 Copying (e.g. b = a)

 Adding or subtracting (e.g. q = p +/- 4)

2. When memory exception occurs, recover values for elements
based on maintained linear sets

Example – Linear Set Tracing

Memory write
exception, crash!

p q

q->name

Path Exploration

 Exploration algorithms

 Branch coverage driven algorithm

 Number of executions - O(n)

 n denotes the number of basic blocks

 Exponential search algorithm - O(2n)

 Implement a taint analysis subsystem

 Determine branches that are input related

The Essence of X-Force

X-Force

 Reachable program state

 Ideal coverage

 Static analysis

 Over-approximate coverage

 Dynamic analysis

 Under-approximate coverage

 X-Force

 Practicality

 X-Force is important in practice

 Results are not affected much by infeasible paths

 Only a small number of predicates are switched

 Fast

 Naturally handle packed, obfuscated, and even self-modifying
binaries

 Existing dynamic analysis can be easily ported to X-Force

The Essence of X-Force

Outline

 Background & Motivation

 Design

 Implementation Challenges

 Evaluation

 Conclusion

Implementation Challenges

 Indirect jump - Jump Table

 Leverage existing jump table reverse engineering techniques

 Treat them as direct conditional branch in exploration
algorithms

 Loops

 If the loop bound is computed from input, it may be a
corrupted value

 Use taint analysis subsystem to determine if it’s input
related

 If so, set the loop bound to a pre-defined constant

 Recursions

 Maintain call stack during execution to detect recursion

 If recursion is too deep, skip calling into it by simulating a
return instruction

Implementation Challenges

 Handling library function calls

 I/O functions, memory manipulation functions

 Protect stack memory

 return addresses, base pointers

 Handling multiple thread execution

 Serialize the execution

 Explore different thread scheduling

Outline

 Background & Motivation

 Design

 Technical Challenges

 Evaluation

 Conclusion

Evaluation: Case Study I – CFG/CG Construction

 Instruction Coverage

IDA Dynamic X-Force Dynamic \

X-Force
X-Force \
Dynamic

164.gzip 7913 3601 5075 0 1474

175.vpr 31847 19409 29218 0 9820

176.gcc 310277 157451 227546 0 70095

181.mcf 2184 1622 1935 0 313

186.crafty 43327 27811 42763 0 14952

197.parser 25532 17339 23135 0 5796

252.eon 70592 15580 27224 0 11644

253.perlbmk 132264 55964 33643 28961 6640

254.gap 113410 37564 110066 0 72502

255.vortex 132053 53798 101207 0 47409

256.bzip2 5761 3612 4830 0 1218

300.twolf 46556 19996 41935 0 21939

Evaluation: Case Study I – CFG/CG Construction

 Indirect Call Edge Coverage

 IDA Dynamic LLVM X-Force Dynamic \
X-Force

X-Force \
Dynamic

164.gzip 0 2 2 2 0 0

176.gcc 25 169 9141 1720 0 1551

252.eon 0 60 28802 121 0 61

253.perlbmk 24 225 - 151 122 48

254.gap 2 1103 187155 20485 0 19382

255.vortex 0 28 340 30 0 2

Evaluation: Case Study I – CFG/CG Construction

 Performance

 Running Time (s) # of Runs Avg. Switched
Predicates # / Total #

164.gzip 704 246 2.1/1291

175.vpr 8725 1849 4.7/2164

176.gcc 173241 26606 12.9/29847

181.mcf 129 113 4.3/153

186.crafty 43995 2496 8.0/62582

197.parser 3424 1820 6.4/944

252.eon 6379 2091 4.1/3146

253.perlbmk 7137 843 8.3/9535

254.gap 50745 7319 6.0/173316

255.vortex 34776 8566 7.3/2548

256.bzip2 557 209 1.4/7001

300.twolf 10043 2825 5.4/1322

Evaluation: Case Study II – Malware Analysis

 X-Force discovers more lib calls than IDA for
packed/obfuscated malware

 X-Force beats dynamic native run for all the programs

Evaluation: Case Study III
 – Type Reverse Engineering

 REWARDS

 A dynamic analysis tool of type reverse engineering

 Porting REWARDS to X-Force

 X-Force provides concrete execution states that are used
by REWARDS

 Little modification

 Results

 Increase variable coverage from 57% to 84%

 Increase type reverse accuracy from 88% to 90%

References

 Static analysis
 Codesurfer/x86

 IDA-Pro

 Tie

 Dynamic analysis
 Dart

 REWARDS

 Howard

 Panorama

 Symbolic analysis
 KLEE

 S2E

 BitBlaze

Outline

 Background & Motivation

 Design

 Technical Challenges

 Evaluation

 Conclusion

Conclusion

 Propose dynamic analysis engine X-Force, a system that
can force binary to be executed

 Requiring no inputs or any environment setup

 Develop a crash-free execution model

 Detect and recover exceptions properly.

 Develop various execution path exploration algorithms

 Provide customized options for users to reduce search
spaces

 Evaluate X-Force on 3 types of case studies

 CFG/CG construction

 Malware analysis

 Type reverse engineering

Thank you!

Q & A

