
Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu
Purdue University

Zhiqiang Lin
UT Dallas

Zhendong Su
UC Davis

X-Force: Force-Executing Binary Programs for Security
Applications

Outline

 Background & Motivation

 Design

 Implementation Challenges

 Evaluation

 Conclusion

Background & Motivation

 Binary analysis

 The analysis on compiled binary software

 No source code & symbolic information

 More challenging than software analysis using source code

 Control flow graph, variable type

 Binary analysis has many security applications

 Exposing malware behavior by constructing CFG/CG

 Identifying and patching security vulnerabilities

Background & Motivation

 Existing approaches

 Static analysis (IDA)

 Examining the code without executing it

 Dynamic analysis (Valgrind, PIN)

 Testing and evaluation of an application during runtime

 Symbolic analysis (BitBlaze, S2E)

 Determine what inputs cause each part of the program to
execute

Good
Coverage

Packing &
Obfuscation

Precision Scalability

Static

Dynamic

Symbolic

Outline

 Background & Motivation

 Design

 Implementation Challenges

 Evaluation

 Conclusion

Design

 What is X-Force?

 Dynamic analysis engine that forces a binary to execute

 Provide no inputs or any environment setup

 Explore different paths by simply switching the outcome of
predicates

Example -Hijack the name resolution for a specific domain

Reads an integer x

If condition satisfied,
a DNS object is
allocated to p

If CODE_RED bit set is in
x, get the domain name

for the object in p
Other objects are put
into the hash table

Fetch an object using
key y==x

If an object is fetched
successfully, malicious

payload triggered

Example – Static Analysis

Object fetched at 13
is from either 8 or 11

Truth: Only
from 8

Example – Dynamic Analysis

If CODE_RED bit is not set
in x, an object with key x
is not put into hash table

Fetching object at line
13 fails

Malicious payload is
not triggered

Example – Symbolic Analysis

Model x as symbolic
variable, hidden
payload may be

reached File processing requires
tremendous work due to

nontrivial file size and
format

Example – X-Force

Provides random
inputs

Assume all 3
predicates go to

false branch

Leads to a non-
interesting path

Example – X-Force

Flip predicates
one by one
Flip predicate at
line 4 first, line 5

gets covered

Leads to a non-
interesting path

Example – X-Force

Flip predicate at
line 6

Not covered,
p = NULL

Memory write
exception, crash!

Crash-free Execution

 Ideas on memory access exception

 Skip it?

 A lot of following exceptions, cascading effect on program
state corruption

 Lose heap data

 Allocate a piece of memory on demand

 It is not sufficient by just fixing the corrupted pointer itself

 Fix the other correlated pointers

Example – Dataflow

Flip predicate at
line 6

Not covered,
p = NULL

Memory write
exception, crash!

Crash-free Execution

 Observations

 Some pointers are correlated

 Correlated pointers are only linearly correlated

 No multiplication/division

 Solution – Linear set tracing

1. Memories/registers that are linearly correlated are put into a set

 Copying (e.g. b = a)

 Adding or subtracting (e.g. q = p +/- 4)

2. When memory exception occurs, recover values for elements
based on maintained linear sets

Example – Linear Set Tracing

Memory write
exception, crash!

p q

q->name

Path Exploration

 Exploration algorithms

 Branch coverage driven algorithm

 Number of executions - O(n)

 n denotes the number of basic blocks

 Exponential search algorithm - O(2n)

 Implement a taint analysis subsystem

 Determine branches that are input related

The Essence of X-Force

X-Force

 Reachable program state

 Ideal coverage

 Static analysis

 Over-approximate coverage

 Dynamic analysis

 Under-approximate coverage

 X-Force

 Practicality

 X-Force is important in practice

 Results are not affected much by infeasible paths

 Only a small number of predicates are switched

 Fast

 Naturally handle packed, obfuscated, and even self-modifying
binaries

 Existing dynamic analysis can be easily ported to X-Force

The Essence of X-Force

Outline

 Background & Motivation

 Design

 Implementation Challenges

 Evaluation

 Conclusion

Implementation Challenges

 Indirect jump - Jump Table

 Leverage existing jump table reverse engineering techniques

 Treat them as direct conditional branch in exploration
algorithms

 Loops

 If the loop bound is computed from input, it may be a
corrupted value

 Use taint analysis subsystem to determine if it’s input
related

 If so, set the loop bound to a pre-defined constant

 Recursions

 Maintain call stack during execution to detect recursion

 If recursion is too deep, skip calling into it by simulating a
return instruction

Implementation Challenges

 Handling library function calls

 I/O functions, memory manipulation functions

 Protect stack memory

 return addresses, base pointers

 Handling multiple thread execution

 Serialize the execution

 Explore different thread scheduling

Outline

 Background & Motivation

 Design

 Technical Challenges

 Evaluation

 Conclusion

Evaluation: Case Study I – CFG/CG Construction

 Instruction Coverage

IDA Dynamic X-Force Dynamic \

X-Force
X-Force \
Dynamic

164.gzip 7913 3601 5075 0 1474

175.vpr 31847 19409 29218 0 9820

176.gcc 310277 157451 227546 0 70095

181.mcf 2184 1622 1935 0 313

186.crafty 43327 27811 42763 0 14952

197.parser 25532 17339 23135 0 5796

252.eon 70592 15580 27224 0 11644

253.perlbmk 132264 55964 33643 28961 6640

254.gap 113410 37564 110066 0 72502

255.vortex 132053 53798 101207 0 47409

256.bzip2 5761 3612 4830 0 1218

300.twolf 46556 19996 41935 0 21939

Evaluation: Case Study I – CFG/CG Construction

 Indirect Call Edge Coverage

 IDA Dynamic LLVM X-Force Dynamic \
X-Force

X-Force \
Dynamic

164.gzip 0 2 2 2 0 0

176.gcc 25 169 9141 1720 0 1551

252.eon 0 60 28802 121 0 61

253.perlbmk 24 225 - 151 122 48

254.gap 2 1103 187155 20485 0 19382

255.vortex 0 28 340 30 0 2

Evaluation: Case Study I – CFG/CG Construction

 Performance

 Running Time (s) # of Runs Avg. Switched
Predicates # / Total #

164.gzip 704 246 2.1/1291

175.vpr 8725 1849 4.7/2164

176.gcc 173241 26606 12.9/29847

181.mcf 129 113 4.3/153

186.crafty 43995 2496 8.0/62582

197.parser 3424 1820 6.4/944

252.eon 6379 2091 4.1/3146

253.perlbmk 7137 843 8.3/9535

254.gap 50745 7319 6.0/173316

255.vortex 34776 8566 7.3/2548

256.bzip2 557 209 1.4/7001

300.twolf 10043 2825 5.4/1322

Evaluation: Case Study II – Malware Analysis

 X-Force discovers more lib calls than IDA for
packed/obfuscated malware

 X-Force beats dynamic native run for all the programs

Evaluation: Case Study III
 – Type Reverse Engineering

 REWARDS

 A dynamic analysis tool of type reverse engineering

 Porting REWARDS to X-Force

 X-Force provides concrete execution states that are used
by REWARDS

 Little modification

 Results

 Increase variable coverage from 57% to 84%

 Increase type reverse accuracy from 88% to 90%

References

 Static analysis
 Codesurfer/x86

 IDA-Pro

 Tie

 Dynamic analysis
 Dart

 REWARDS

 Howard

 Panorama

 Symbolic analysis
 KLEE

 S2E

 BitBlaze

Outline

 Background & Motivation

 Design

 Technical Challenges

 Evaluation

 Conclusion

Conclusion

 Propose dynamic analysis engine X-Force, a system that
can force binary to be executed

 Requiring no inputs or any environment setup

 Develop a crash-free execution model

 Detect and recover exceptions properly.

 Develop various execution path exploration algorithms

 Provide customized options for users to reduce search
spaces

 Evaluate X-Force on 3 types of case studies

 CFG/CG construction

 Malware analysis

 Type reverse engineering

Thank you!

Q & A

