TRUESET: Faster Verifiable Set Computations

Ahmed E. Kosba†, Dimitrios Papadopoulos‡, Charalampos Papamanthou†
Mahmoud F. Sayed†, Elaine Shi†, Nikos Triandopoulos§‡

† University of Maryland, College Park
‡ Boston University
§ RSA Laboratories

USENIX Security’14
August 22nd, 2014
Outsourcing of Storage and Computations

• Integrity/Correctness Concerns → Verifiable Computation (VC)

• Making VC practical
 Short Proof - Short Verification Time - Short Proof Computation Time

Not there yet!!
Verifiable Set Operations

- The proof computation time is very high for current generic VC systems.
 - It can take 100+ seconds to produce a proof for an intersection of two 256-element sets.

- **TRUESET** provides orders of magnitude better performance
 - More than 100x Speed-up achieving < 1 second in the above case.

SQL Join Queries

```sql
SELECT UNIVERSITY.id
FROM UNIVERSITY JOIN CS
ON UNIVERSITY.id = CS.id
```

Jaccard index

\[
\text{Similarity} = \frac{|A \cap B|}{|A \cup B|}
\]
Verifiable Computation

Approaches:
• Secure hardware based
• Replication based
• Cryptography based

Characteristics:
• Compact Constant-size Proof, e.g. 288 bytes for Pinocchio
• Short Verification Time: $O(\text{size of IO})$
• High Proof Computation Time

Each individual operation is mapped to a set of gates or constraints

```c
void func(struct Input* in, struct Output* out){
    /* subset of C */
}
```
Arithmetic Representation of Set Operations is **Expensive**

- Another challenge: Have to account for the **worst-case set size** during proof computation.
TRUESET

Goals:
- **Reduce** proof computation time for set operations
- Achieve *input-specific* running time for the prover
- Retain the *expressiveness* of previous techniques

Main Idea:

Polynomial Set Circuit

- \(A(z) \rightarrow B(z) \rightarrow C(z) \)
- \(\rightarrow D(z) \)

Arithmetic Set Circuit

- Instead of

\[
\begin{align*}
A(z) + B(z) + C(z) + D(z) + \ldots
\end{align*}
\]
Sets as Polynomials

• Represent a set \(A = \{ a_1, a_2, \ldots, a_n \} \) by an \(n \)-degree polynomial \(A(z) = (z+a_1)(z+a_2) \ldots (z+a_n) \)

Two Primary Advantages:
• The circuit size is **constant** for set operations.
• The effort correlates with the degrees of the polynomials on the wires.
How to build $O(1)$ circuits for set operations?
Efficient Set Circuits

• Intersection Gate

\[I(z) = \text{GCD}(A(z), B(z)) \text{ iff there exists polynomials } \alpha(z), \beta(z), \gamma(z), \delta(z) \text{ such that} \]

\[\Rightarrow \alpha(z)A(z) + \beta(z)B(z) = I(z) \]
\[\Rightarrow \gamma(z)I(z) = A(z) \]
\[\Rightarrow \delta(z)I(z) = B(z) \]

• The witness polynomials can be calculated by the Extended Euclidean algorithm for polynomials.
Efficient Set Circuits

• Union and Difference gates can be built similarly.

\[\alpha(z)A(z) + \beta(z)B(z) = i(z) \]
\[\gamma(z)i(z) = A(z) \]
\[\delta(z)i(z) = B(z) \]
\[\delta(z)A(z) = U(z) \]

\[\alpha(z)A(z) + \beta(z)B(z) = i(z) \]
\[D(z)i(z) = A(z) \]
\[\delta(z)i(z) = B(z) \]
Retaining Expressiveness

- Hybrid Queries:

\[
\text{SELECT COUNT(UNIVERSITY.id)} \\
\text{FROM UNIVERSITY JOIN CS} \\
\text{ON UNIVERSITY.id = CS.id}
\]

- TrueSet provides a set of useful gates to ensure expressiveness
 - Zero-degree assertion gate.
 - Split and Merge gates.
 - Cardinality gate.
How to build verifiable polynomial circuits protocol?
Quadratic Arithmetic Programs (QAPs)

$\begin{align*}
\sum_{k=1}^{m} c_k v_k(x) \cdot \left(\sum_{k=1}^{m} c_k w_k(x) \right) - \left(\sum_{k=1}^{m} c_k y_k(x) \right) &= t(x) h(x) \\
\text{where} \\
t(x) &= (x - r_1) (x - r_2) \ldots (x - r_d) \\
v_k, w_k \text{ and } y_k \text{ are polynomials defined based on the circuit structure.}
\end{align*}$

Equivalent Constraints

- $c_5 = c_3 \cdot c_4$
- $c_6 = c_5 \cdot (c_1 + c_2)$
- ...

Quadratic Polynomial Programs (QPPs)

Equivalent Constraints

\[c_5(z) = c_3(z) \cdot c_4(z) \]
\[c_6(z) = c_5(z) \cdot (c_1(z) + c_2(z)) \]

\[(\sum_{k=1}^{m} c_k(z)v_k(x)) \cdot (\sum_{k=1}^{m} c_k(z)w_k(x)) - (\sum_{k=1}^{m} c_k(z)y_k(x)) = t(x)h(x,z) \]

where

\[t(x) = (x - r_1)(x - r_2) \ldots (x - r_d) \]

\[v_k, w_k \text{ and } y_k \] are polynomials defined based on the circuit structure.
Verifiable Polynomial Circuits

• Protocol outline:

1. Key Generation

2. Client sends input

3. Server computes proof

4. Client verifies the result.
Implementation

• Added support to Pinocchio’s C++ implementation to handle verifiable polynomial circuits with loops.

• Used open-source libraries to handle field and crypto operations: NTL and nifty ate-pairing.

• Operations are done in a Field F_p where p is a 254-bit prime. Bit security level is 127.

• Comparison with two Pinocchio implementations:
 • The original executable by Microsoft Research (MS-Pinocchio)
 • An executable that uses the same polynomial and crypto libraries as TrueSet (NTL-ZM Pinocchio)
Evaluation

• Comparison:
 • Two variants for Pinocchio set circuit programs:
 • A pair-wise approach requiring $O(n^2)$ equality-check gates.
 • A sorting-network approach requiring $O(n \log^2(n))$ comparator gates.

Example Intersection Circuit using a Sorting Network

- Set 1
- Set 2

Odd Even Merge Sort

$O(n \log^2(n))$ comparators

Check for a duplicate

$O(n)$ equality gates
Evaluation

• Set Programs:
 • Single union operation
 • Multi set operations

• The input sets contain random elements from the field F_p.

• For each input set size, a different circuit was produced for Pinocchio alternatives.
Proof Computation Speedup

Proof Computation – Single Gate

Proof Computation – Multi-gate

150x improvement when |s| = 256

> 50x improvement when |s| = 64

- More than 90% savings in the evaluation key sizes.
- Retain almost similar verification times and verification keys sizes.

|s| refers to each input set size
Optimizations / Extensions

- Optimizations
 - Bivariate polynomial operations
 - Randomized check for output polynomial

- Case of *outsourced* sets
 - Usage of Merkle trees and bilinear accumulators.

- TrueSet provides inherent support for *multisets*, while other approaches will require more complexity.
Conclusions

- **TRUESET** a system that aims at reducing proof computation time for verifiable set computations.

- Modeling set operations as polynomial circuits helped achieve:
 - Much better proof computation time (More than 100x when set size is 256)
 - Great savings (> 90%) in the circuit evaluation key size
 - Input-specific running time for the prover

- Is this practical yet?
Thank You 😊

Questions?

akosba@cs.umd.edu