

Size Does Matter

Why Using Gadget-Chain Length to Prevent Codereuse Attacks is Hard

ENES GÖKTAŞ (VRIJE UNIVERSITEIT AMSTERDAM)

ELIAS ATHANASOPOULOS (FORTH-ICS)

MICHALIS POLYCHRONAKIS (COLUMBIA UNIVERSITY)

HERBERT BOS (VRIJE UNIVERSITEIT AMSTERDAM)

GEORGIOS PORTOKALIDIS (STEVENS INSTITUTE OF TECHNOLOGY)

April 26, 2014 | By Xiaobo Chen, Dan Caselden and Mike Scott | Advanced Malware, Exploits, Targeted Attack, Uncategorized

Summary

FireEye Research Labs identified a new Internet Explorer (IE) zero-day exploit used in targeted attacks. The vulnerability affects IE6 through IE11, but the attack is targeting IE9 through IE11. This zero-day bypasses both ASLR and DEP. Microsoft has assigned CVE-2014-1776 to the vulnerability and released **security advisory** to track this issue.

able to access an arbitrary location. It overwrites tion (Note that the exploit does not rely on heap DP gadgets built from a Flash Player DLL. The on executable. Finally, the control is passed to the

Control-Flow Integrity

Promising defense mechanism against ROP

We showed that **recent CFI proposals** do not stop ROP attacks (see "Out of Control: Overcoming CFI", Oakland '14)

Inspecting Branching History

Alternative promising defenses against ROP

State-of-the-art proposals:

- kBouncer (Pappas et al., Usenix Security 2013)
- ROPecker (Cheng et al., NDSS 2014)

Assume to be broken

Fundamentally based on:

- a Control-Flow Integrity policy, and
- a **Heuristic**-based policy

Focus of this talk

What are the security implications?

Heuristic-based policy

Relies on two threshold parameters

L_T or less number of instructions are considered as gadgets= max gadget length

C_T or more gadgets in sequence is an attack= gadget chain threshold

Picking the "best" Thresholds

An attacker could mix short gadgets with long gadgets longer than L_{τ} Chain length less than C_{τ} Chain length less than C_{τ} Breakers L_{τ}

Preferably: L_T as large as possible & C_T as small as possible

But setting L_T too large and C_T too small can lead to False Positives

Thresholds have to be chosen carefully!

Chosen thresholds of defenses

	kBouncer	ROPecker
Time-of-Check	Entry of Sensitive API	Entry of Sensitive API + Exit of executable code window
Gadget Length	20 instructions	6 instructions
Inspect BH instances	Detected max "benign" gadget chain length: 5	Detected max "benign" gadget chain length: 10
Gadget Chain Length	8 gadgets	11 gadgets

Difficulties with Heuristic Breakers

Heuristic Breakers may easily:

- Use high number of different registers
- Leave used registers <u>dirty</u> at exit
- Require <u>memory preparations</u>
- Have a <u>whacky</u> code sequence

```
mov eax, ebx
mov ecx, edx
add esi, edi
mov esi, [0x1234]
cmp esi, 10
jg X
mov ecx, 0x2321
div ecx
mov [eax], edi
mov ecx, 0x5678
and edi, ecx
xor eax, edi
retn
```

Proof-of-Concept Exploit

Real IE8 vulnerability

Bypasses ASLR, DEP, kBouncer

<u>Idea</u>: intersperse a Heuristic breaker in ROP chain to prevent reaching C_T

Goal: execute our injected code

Implications of Stricter Thresholds

Difficulties for an attacker:

- Not enough space to prepare Heuristic Breaker
- Not enough space to restore state after Heuristic Breaker
- Not enough space to prepare a function call

Per Application Thresholds

Conclusion

Choosing the right thresholds for ROP detection is difficult

The "long gadgets are not usable" assumption is broken

We need <u>better</u> tools to evaluate our defenses