
Blanket Execution:
Dynamic Similarity Testing for

Program Binaries and Components

Manuel Egele, Maverick Woo,

Peter Chapman, and David Brumley

Carnegie Mellon University

1

Picture Yourself as an Analyst

You just identified a function of interest

Questions:

–Have I seen an equivalent or similar
function before?

–How can I find binaries that contain
similar functions?

2

Similar vs. Equivalent

1 static int strcmp_name(V a, V b) {
2 return cmp_name(a, b, strcmp);
3 }
4
5 static inline int cmp_name (
6 struct fileinfo const *a,
7 struct fileinfo const *b,
8 int (*cmp) (char const *,char const *)
9)
10 {
11 return cmp (a->name, b->name);
12 }

3

Similar vs. Equivalent (cont.)
407ab9 <strcmp_name>:
 ab9: push %rbp
...
 ad1: mov $0x402710,%edx
... PLT entry of strcmp
 ad6: mov %rcx,%rsi
 ad9: mov %rax,%rdi
 adc: callq 406fa1 <cmp_name>
 ae1: leaveq
 ae2: retq

406fa1 <cmp_name>:
 fa1: push %rbp
...
 fcd: callq *%rax
... call func. pointer (e.g., strcmp)
 fcf: leaveq
 fd0: retq

4

gcc –O0

4053e0 <strcmp_name>:

 e0: mov (%rsi),%rsi

 e3: mov (%rdi),%rdi

 e6: jmpq 402590
 <strcmp@plt>

gcc –O3

Syntactic differences
complicate static

similarity analysis

Function-Binary Similarity

Question with plenty security applications

– Patch analysis / patch-based exploit generation
Which function has (not) been patched?

– Malware analysis
Did I analyze similar code like this already?

– Higher-level concepts
Function-binary search engine

5

Blanket Execution

Dynamic analysis
– Execute function f under a fixed environment

– Record side effects (features) of this execution

– Two functions f and g are similar if their side
effects are similar

Limited coverage
– Execute f repeatedly starting from first un-

executed instruction  full line coverage

– But: Natural meaning of function execution (i.e.,
start from beginning) is sacrificed

6

Execution Environment

• Provides concrete & consistent values for:

– All registers

– All memory locations

• Must be efficiently reproducible

• Blanket Execution-Run:

1. Load target binary via OS loader

2. Initialize execution environment

3. Divert control from program entry point to the
first un-executed instruction in f

7

Implementation Considerations

• Compiled functions have dependencies

– Global variables

– Structure of passed arguments

• In blanket execution, functions are executed
in randomized but fixed environment

– Dependencies are likely not met  frequent
accesses to unmapped memory

8

Argument Access

5 static inline int cmp_name (

6 struct fileinfo const *a,

…

11 return cmp (a->name, b->name);

struct fileinfo {

char * name, … }

e0: mov (%rsi),%rsi

9

Implementation (cont.)

• Environment specifies dummy memory page

• Dummy page is mapped (on demand) at all
unmapped addresses

– Memory writes succeed

– Memory reads — consistent and succeed

• Consistent values allow comparison

10

Side Effects & Feature Vectors

• Dynamically observable features (e.g.,
memory accesses, syscalls, etc.)

• Combine all side effects per function into a
feature vector of length N (for N features)

• Coordinates: sets of observed feature values

• Similarity score for f and g

11

normalized weighted Jaccard indices

Features

• Memory reads/writes to the stack

• Memory reads/writes to the heap

• System calls

• Library calls via plt

• Function return value in %rax

12

Dataset

• GNU coreutils 8.13 (95 binaries)

• Three compilers:
– GNU gcc 4.7.2

– Intel icc 14.0.0

– LLVM clang 3.0-6.2

• Four optimization levels each (-O{0,1,2,3})

• Result: 1,140 binaries, 195,560 functions

• Debug symbols  ground truth through
function names

13

BlEx Performance

• Implemented with Intel’s Pin

• 195,560 functions & 11 environments

• 1,590,773 BE-runs / environment

• 17,498,507 BE-runs 57 CPU days

• Two versions of ls ~ 30 CPU minutes

• Independent executions  embarrassingly
parallel workload

14

Results vs. BinDiff

Proxy for (dis-)similarity: # optimizations

– O2 vs. O3 high similarity (9 optimizations)

– O0 vs. O3 high dissimilarity (66 optimizations)

15

BinDiff
BlEx

Results vs. BinDiff (cont.)

Large syntactic differences

– gcc –O0 vs. gcc –O3

– BlEx outperforms BinDiff 2x on avg. (up to 3.5x)

16

BinDiff
BlEx

Binary Search Engine

Given:

– An indexed corpus C of function-binaries /
feature vectors (v1, …, vn)

– A search query function f

Result:

– Which feature vector vi ∈ C corresponds to the
function g most similar to f

– Sort results w.r.t. similarity with f

17

Binary Search Engine — Experiment

• Queries: q1, …, q1,000 randomly selected
functions from coreutils (gcc –O0)

• Corpus C: 29,015 remaining functions from
coreutils (gcc –O1, gcc –O2, gcc –O3)

• Single search executes in < 1s

18

Binary Search Engine — Results

64% correct match at the top

77% correct match under top ten

19

Summary

• Function binary similarity is a challenge
– Static approaches thwarted by syntactic differences

(e.g., compiler or optimization)

• Blanket Execution: dynamic analysis to identify
similar function-binaries
– Coverage achieved by re-executing function

– Functions are similar if their feature vectors are

– Outperforms static systems for large syntactic
differences

– Blanket execution can be used as a building block for
a binary search engine

20

END

