Automated diagnosis without predictability is a recipe for failure

Raja Sambasivann
Greg Ganger

PARALLEL DATA LABORATORY
Carnegie Mellon University
What is important for design? (I)

The designer usually finds himself floundering in a sea of possibilities, unclear about how one choice will limit his freedom...or affect the size and performance of the entire system.

--Butler Lampson
What is important for design? (II)

• Commonly agreed upon axes:
 • Correctness, perf., reliability, power...

• This talk: Predictability also important
 • Especially for large distributed systems
 • Affects ability to optimize other axes
 • Affects manageability

Achieving it will require hard work
Predictability means low variance

Metric with low variance

Metric with high variance

Metric (e.g., response time)
Predictability is important (I)

- For performance and efficiency of very large-scale computing workloads

Limits performance!
Predictability is important (II)

• For setting & enforcing SLAs and QoS

95% of times < 25ms
Predictability is important (III)

• For success of automated diagnosis

 Magpie | NetMedic | Pinpoint | Spectroscope | ...

• Automation tools not used in production
 • Problem is the system, not the tools...

Cherry-on-top approach to automation
The issue with diagnosis tools

- Use deviations in metrics to localize perf. problems to a few likely culprits

- Increased variance in metrics yields...
 - more false positives or false negatives
Grad student vs. diagnosis tool

Photo sharing app

Photo sharing service

User info service

Photo categorizer

HBase

HDFS

Image from Piled Higher & Deeper (www.phdcomics.com)

Research!!
The easy life of a grad student

• Student’s research idea improves avg. response time by 25%

• But, variance too high for confidence:
 • Can run more experiments
 • Can ignore variance ;)

Avg. latency

Original

New
The hard life of a diagnosis tool

- Tool must find code responsible for an increase in mean response time

Which services or machines are culprits?

Photo sharing app

Photo sharing service

User info service

Photo categorizer

HBase

HDFS
The hard life of a diagnosis tool

- Can’t ignore underlying variance
 - Will yield more false positives/negatives
 - FPs: Tool is misleading developer
 - FNs: Tool is not useful

- Can’t ‘re-run’ problem in production

Utility of diagnosis tools limited unless system has predictability properties
How to increase predictability?

- Variance is treated as a key metric
 - Must be measured during dev/testing

- Devs must ID high-variance sources
 - Must *explicitly* decide on tradeoffs

- Must rigorously isolate irreducible variance sources from rest of system
Grokking variance

Variance nomenclature

Helps devs reason about possible actions

VarianceFinder

Identifies similar behaviour w/high variance and localizes it

(Developer)
The three I’s of variance

- **Inadvertent** variance is unintentional
 - E.g., spaghetti code or a bug

- **Intrinsic** variance is fundamental
 - E.g., Hard disks/non-networks

- **Intentional** variance result of tradeoff
 - E.g., low-latency schedulers
Open questions about variance

• How much needs to be reduced?

• If intrinsic variance is significant are hardware changes needed?

• If intentional variance is significant do we need to re-evaluate tradeoffs?
Conclusion

• Predictability important for systems

• No answer but hard work during system development and testing

• Need tools/techniques to help developers increase predictability