Cloning Credit Cards: A combined pre-play and downgrade attack on EMV Contactless

Michael Roland

13 August 2013 • USENIX WOOT’13 • Washington, D.C., USA
Outline

● Introduction
 ► EMV Contactless
 ► MasterCard PayPass

● Pre-play and Downgrade Attack
 ► How it works
 ► Implementation
 ► Results & Improvements
 ► Workarounds

● Demo

● Conclusion
EMV Contactless

- Standard for credit/debit cards with contactless interface
- Based on ISO 14443
 - Inductive coupling
 - 13.56 MHz
 - Compatible to NFC
- Combines different payment systems
 - AmEx ExpressPay: Kernel 4
 - JCB J/Speedy: Kernel 1 & 5*
 - MasterCard PayPass: Kernel 2
 - Visa payWave: Kernel 1 & 3

*) since version 2.3, March 2013
Kernel 2: MasterCard PayPass

- 2 modes
 - EMV mode
 - Mag-Stripe mode

- EMV mode
 - Secure chip uses EMV protocol over contactless ("Chip & PIN")

- Mag-Stripe mode
 - Secure chip emulates magnetic stripe system
 - Compatibility mode to magnetic stripe back-end systems

- Support in contactless cards and terminals
 - Mag-Stripe mode: mandatory
 - EMV mode: optional (Europe/SEPA: mandatory)
Kernel 2: EMV Mode

● Card contains
 ► Static card data (e.g. account number, expiry date, etc.)
 ► Issuer’s digital signature over static data
 ► Public keys of card and issuer
 ► Secret key of card for digital signature

● Transaction
 ► Terminal reads card data
 ► Terminal authenticates card data
 – using issuer’s digital signature
 ► Card authenticates payment transaction
 – by generating digital signature over transaction data (amount, date, etc.)
Kernel 2: Mag-Stripe Mode

- **Card contains**
 - Static card data (e.g. account number, expiry date, etc.)
 - Format comparable to that on magnetic stripe
 - Secret key for generating dynamic card verification codes

- **Transaction**
 - Terminal reads card data
 - Terminal sends unpredictable number (UN) to card
 - Card generates dynamic card verification code (CVC3) for UN
 - Authenticates card (but not the contents of a transaction)
 - Can be verified by card issuer during online authorization

- **Main differences to EMV mode**
 - No offline authentication of static card data
 - No authentication of payment transaction data
Goal of our Attack

● Skimming of contactless credit cards
 ► We want to create a clone of a credit card
 ► We want to use this clone to pay at POS terminals

● Target of our attack: Kernel 2’s Mag-Stripe mode
 ► Supported by all cards and terminals
 ► Most data is static and can be skimmed
 ► Terminal cannot check integrity of static data (no signature, etc.)
 ► Problem: Dynamic card verification code (CVC3)
 ─ Used as a proof that terminal communicates with original card
 ─ **Existing attacks simply skip CVC3** and use skimmed data with merchants that do not require a CVC (e.g. Amazon)
CVC3
Dynamic Card Verification Code

- CVC3 = function(unpredictable number, transaction counter, secret card key/card data)

 - **Secret card key:**
 - Securely stored on card and cannot be skimmed
 - Protects against generation of CVC3s without original card

 - **Transaction counter (ATC):**
 - Stored on card and incremented for every transaction
 - Protects against re-use of CVC3s (re-play)
 - Protects against out-of-sequence use of CVC3s

 - **Unpredictable number (UN):**
 - Challenge generated by terminal
 - Protects against pre-generation of CVC3s (pre-play)
Pre-play Attack despite CVC3

● Pre-play protection relies on unpredictable number
 ► If UN is predictable an attacker can pre-generate CVC3s!

● UN in EMV Contactless Kernel 2:
 ► UN is a 4-byte field
 – 2^{32} (~4.3 billion) possible values
 – Pre-generation unfeasible
 ► BUT: field is limited to BCD-encoding
 – 100 million possible values
 – ~43 times less than field limit
 – Pre-generation still unfeasible
 ► BUT: number of BCD digits is defined by issuer (\& stored on card)
 – Typical limit: 2-3 digits
 – 3 digits: 1000 possible values
 – ~4.3 million times less than field limit
 – Pre-generation is feasible!!! → Pre-play attack
Limitations

● ATC sequence
 ► Any transaction with a higher ATC invalidates CVC3s for lower ATCs
 ► Attack is only possible until original card is used for another transaction

● Mag-Stripe mode only
 ► Attack only works for Mag-Stripe mode transactions
 ► *BUT:* EMV mode transaction is performed if both, card and terminal, support EMV mode (e.g. in Europe)
 ► Attack does not work if card and terminal support EMV mode
Downgrade Attack

- Limitation: Attack only works if either card or terminal support only Mag-Stripe mode

- Solution: Downgrade to Mag-Stripe mode
 - Make terminal believe it talks to a Mag-Stripe only card
 - Support for EMV mode is a flag in the Application Interchange Profile (one of the first data elements that the terminal reads from the card)
 - AIP has no integrity protection
 - Change flag in AIP on card clone → Downgrade attack
Mounting the Attack

- Collect data for pre-play and downgrade attack
 - Use app on NFC-enabled mobile phone (e.g. Galaxy Nexus)
 - Read static card data
 - Modify EMV mode flag
 - Pre-generate 1000 CVC3s
 - One code for each possible UN
 - At least one transaction can be performed
 - Performance
 - ~1000 codes/minute with Galaxy Nexus
 - BUT: not every card works well with every phone

- Create clone card
 - Use applet on Java Card
 - Applet contains data structures of credit card
 - Filled with static data from original card
 - Applet contains list of UN + ATC + CVC3 sets
 - Filled with pre-played CVC3s
 - Clone returns first set that matches given UN
Results

- **Test**
 - Read card data and pre-generate CVC3s using Galaxy Nexus
 - Copy data to clone card
 - Pay with clone card at POS

- **Performed test using**
 - 3 credit cards (from 2 different issuers)
 - 3 different terminals (all from same acquirer)

- **Payments were approved in all cases**
Improvements

- Further reduce number of digits of UN
 - Number of digits is stored on card
 - Can be modified in clone card
 - Result: Faster pre-generation of CVC3s
 - **BUT:** Can be detected by issuer
 - Number of digits is sent to issuer during Mag-Stripe online authorization
 - 1 of 2 tested issuers detects & rejects such transactions

- Abuse terminal-specific weaknesses
 - Communication with 1 of 3 tested terminals can be forced to restart
 - Even after terminal sent unpredictable number to card
 - Upon restart terminal uses new unpredictable number
 - Works up to 6 times for one transaction
 - Clone card can restart transaction if no CVC3 is available for a given UN
 - Clone card can choose between 6 UNs
 - Card does not need to know a CVC3 for every UN
 - Result: Faster pre-generation of CVC3s
Workarounds

● Mag-Stripe mode vs. EMV mode
 ► Issuer receives information if terminal supports EMV mode
 ► Issuer receives information if transaction was performed using EMV mode or Mag-Stripe mode
 ► Issuer knows if card supports EMV mode
 ► Issuer **can detect** downgrade-case where EMV mode card is used at EMV mode terminal in Mag-Stripe mode
 ► Our results show that issuers do **not** currently perform such checks
Workarounds (cont’d)

● Reduction of number of digits of UN
 ▶ Number of digits used in transaction is sent to issuer
 ▶ Issuer can detect if number of digits was tampered with
 ▶ Our results show that some issuers have such checks in place

● Maximizing number of digits of UN
 ▶ Adding one digit increases pre-generation time by factor 10
 ▶ 4 digits: already 10 minutes → Pre-play infeasible!
 ▶ Number of digits limited by Mag-Stripe back-end
 ▶ Issuers should try to maximize size of UN
Video

Cloning Credit Cards: A combined pre-play and downgrade attack on EMV Contactless

http://youtu.be/VIAwxUs1ZFo
Conclusion

- Successful pre-play attack against Mag-Stripe mode
- Extended attack to EMV mode cards by downgrading to Mag-Stripe mode
- Protocols already contain countermeasures
- Many countermeasures are not implemented by issuers
- Reported our finding to MasterCard
 - Acknowledged vulnerabilities
 - Pointed out that their protocols and rules provide countermeasures
 - Left to the issuer to implement these measures