=
>

ERICSSON

THe
CLICKZNeTFPGA
TOOLCHAIN

Teemu Rinta-aho, Mika Karlstedt, Madhav P. Desai
USENIX ATC ‘12, Boston, MA, 13t of June, 2012

\\

CLICKZNETFPGA

» We have explored the possibilities of High Level Synthesis
(HLS) in the packet processing domain
— HLS is transforming software into hardware

» Using a number of open source components, some new
code (and some glue), we have created a prototype
toolchain that allows

— Defining Click configurations using existing and new elements,
— Writing new Click elements in C++, and
— Compiling them to hardware, to be run on NetFPGA

» The main components are Click, NetFPGA, LLVM,
Click2LLVM and AHIR

The Click2NetFPGA Toolchain | 2012-6-13 | Page 2

\\

RELATED WORK

» There are several academic and commercial HLS tools
available: Trident, LegUp, AutoESL, Catapult C, C2S, ...

» They either hardware accelerate certain parts of a software
program, or completely synthesise only smaller units

» The Click2ZNetFPGA Toolchain is a “system-to-system”
compiler
— More specifically designed for a specific source and a target system

— .. but modifying or extending the source system does not require
knowledge of the target system

— .. and modifying packet processing code does not require
understanding hardware design or programming in Verilog or VHDL

The Click2NetFPGA Toolchain | 2012-6-13 | Page 3

\\

CLICK MODULAR ROUTER

» A software platform (C++) for building different kinds of
packet-processing nodes / functions, or “routers”

» Define a software router from packet processing elements
» Runs in Linux/BSD user space or in Linux kernel
» 100+ existing elements, e.g. ARPResponder, Classifier

» Easy to add new elements
» Easy to build custom routers

The Click2NetFPGA Toolchain | 2012-6-13 | Page 4

NeTFPGA

» A PCI network interface card with an
FPGA

—4 x 1 Gbps Ethernet interface
» Line-rate, flexible, and open platform
» For research and classrooms

» More than 1,000 NetFPGA systems
deployed

» A few open-source, Verilog-based
reference designs

» Harder to modify or add new modules
(for an average network developer/
researcher) than in Click

The Click2NetFPGA Toolchain | 2012-6-13 | Page 5

=
>

LLVM

» An open source compiler, from UIUC

» A set of tools and optimizers

» Easy to write new compiler passes

» Easy to write new backends (and, maybe, frontends)

» Represents intermediate code in SSA (Single Static
Assignment) form
— An abstract, assembler-like form, with unlimited registers

» Outperforms GCC in many (but not all) ways
» Can perform global optimizations (after linking)

The Click2NetFPGA Toolchain | 2012-6-13 | Page 6

\\

\\

AHIR

» LLVM backend for generating VHDL
— Open source, from IIT Bombay
— Factorises the system into control, data, and storage
Supports scalable optimisations and analyses

— Current limitations: no recursion or function pointers, otherwise full C
— Generates a VHDL module out of each LLVM IR function

» Design = Set of modules with I/O channels
—1/O through a simple VHDL “library”, resembling Unix pipes

The Click2NetFPGA Toolchain | 2012-6-13 | Page 7

AN AHIR EXAMPLE

CONVERTING AN LLVM INSTRUCTION TO VHDL

\\

» A simple example of addition instruction
» Ccode:int d = m + n;
» Equivalent LLVM IR: %d = add 132 %m, %n

CDFG Control Data
path path

——— Control Edge
- - =»Data Edge

The Click2NetFPGA Toolchain | 2012-6-13 | Page 8

IMPLe/M

Compile Click elements to

- linkable .o files (host)

- LLVM IR source files (NetFPGA)
(only initially and after Click updates)

Click

Click
element ————> —_—
source

i Click :
. ¢ |host target ———
library . 1
Click
config
source

ENTATION

\\

Run transformations

Optimisations

Make code more suitable for

Run NetFPGA SDK to build
a new netlist, including VHDL

generated from Click

target

Click
config IR

The Click2NetFPGA Toolchain | 2012-6-13 | Page 9

ooooooooooooooooooooooooooooooooooo

+ NetFPGA/!
' Click

NetFPGA | :
J reference |]
. : NIC

VHDL

Use AHIR to convert
LLVM IR into VHDL

Read Click configuration,
build the router in memory,
read private vars and link
required files with constant
Click elements into an LLVM
IR module

\\

cSULTING HARDWAR

T

1

1

1

'

. = > | Click element }

% FromFPGA CheckIPHeader IPLookup : (name: to0)
H wrapper --=>» | Clickelement |-..._ | Click element Click element ; wrapper

BRAM for packets

free_queue

ToFPGAO
1
- 1
. 1
_input : (name: src) ! (name: chk) (name: rtt) !
! ! i ToFPGA1
! i 4 A ' Click element
E : : l i ! (name: tol) A
i a : : : : x i
o A]
1
z |5 ig a s — = == = = b
- = 1 Il 1 1 ! . . !
3 |3 i i s o ! F L
g ° 8 ; ' fromfpga_in0 i ' chk_in0 " rtt_in0 ; ; toO_out0 ' tofpga_out0
(] ! - Il P
: |2 2 e EuEn
e o S ;
% =1 i tol_outO
S
o
(']
Q.
™
@,
o
=]

Bt x T

He+xT
D+ xT

The Click2NetFPGA Toolchain | 2012-6-13 | Page 10

\\

cVALUATION

» Modifying a Click-based hardware router requires only
modification of the Click element’s C++ code, running make
and waiting for the hardware synthesis to complete

» Current prototype can reach 1/3 of the line speed (1 Gbps)
— Translation between NetFPGA and Click data models on input and
output is the major bottleneck
» We could reach the same packet processing performance
but we would use more (than available) FPGA resources

— For example, in one configuration, replicating the ChecklPHeader
element gave an 18% improvement with 10% increase in resource
usage

— Also adding double banked memory gives a total of 31%
improvement with a total of 19% increase in resource usage

The Click2NetFPGA Toolchain | 2012-6-13 | Page 11

\\

rUTURE WORK

» Redesigning memory/packet-1/0 model
— 64-bit instead of 8-bit memory transfer functions
— Initiating Click processing before a complete packet is received

» Using memory outside the FPGA (e.g. DRAM)
» Finding more ways to add parallelism

» Using optimized code templates in LLVM -> VHDL
transformation

» Dividing Click code to run partly on host CPU and partly as
hardware
— Get back Click live reconfigurability
— Save FPGA resources for time critical processing tasks

The Click2NetFPGA Toolchain | 2012-6-13 | Page 12

\\

CONCLUSION

» We have shown that writing a toolchain that transforms a
complex software system into a hardware system is
possible

» However, more work is required in order to develop a
toolchain that

— Creates a hardware system which runs more efficiently than the
original software system and doesn’t require more hardware
resources than a hand-written hardware design

— Supports all software features (e.g. recursive constructs, system
reconfigurability)

The Click2NetFPGA Toolchain | 2012-6-13 | Page 13

Thank you!

Questions?

\\

ERICSSON

