The Moving Cloud: Predictive Placement in the Wild

Azarias Reda, Meritful
Brian Noble, University of Michigan
Latency

• Latency as a first class concern
 – With mobile devices, the “reach” is extending

• Latency is difficult:
 – Simply packing more bits doesn’t improve it
 – It has a hard upper bound
 – Additional services impact it the most
 – It’s doesn’t sell:
Humans and latency

• We are very sensitive to delay and jitter
 – Even in systems with adequate balance

• Humans notice even a modest increase in latency
 – Experiments with streaming, interactive services

• At a few hundred millisecs, many applications degrade
 – All too common in mobile connectivity
Latency in challenged networks

- Even more pronounced in many scenarios
 - Mobile connectivity
 - Shared access centers
 - Makes even simple network tasks unpleasant

- We have been looking at bandwidth primarily
 - Several approaches towards improving access
 - Some of these approaches help with latency too
• Provisioning data as close to demand as possible
 – Trading latency for storage and bandwidth

• The moving cloud:
 – Proposing a framework for proactive data delivery
 – Partial validation for components
Themes in the moving cloud

• People are creatures of habit
 – Move in patterns that can be probabilistically learned
 – Access data in patterns*

1. A proactive delivery infrastructure
 – Secure and extensible

2. Augmenting predictions with time bounds
 – Understanding temporal component of mobility

3. Leveraging the context of data access
 – Using context for data selection

Improved Delivery
An Example: Cyber foraging

- Augmenting computation with local surrogates
 - Cut on the latency to reach the cloud
 - Perform computationally intensive tasks on mobile devices

- Computation as a replaceable resource
 - Can be provisioned by nearby machines
 - Often a single hop away

- Try to define units of computation to offload – not easy
“Cloudlets”

• The latest in cyber foraging

• “Data centers in a box”
 – Can be deployed alongside wireless access points
 – Provide on-demand augmentation

• Use virtual machines to encapsulate computation
 – “Base” VM at public nodes, and private “overlays”
The moving cloud and cloudlets

- Cloudlets augment computation
- However, VM matching and updating is hard
 - Many overlays to work with various base VMs
 - Updates are difficult to propagate

- The moving cloud simplifies targeted, proactive delivery
- Can be used to implement the cloudlet idea
 - Deliver targeted VMs ahead of time
 - Employ techniques for smarter and efficient delivery
High level design

Key principles:
• Proactive placement
• Extensibility
• Access models
Application model

• An application will have two components

• Server based component:
 – Deals with high fidelity, first level replica of its data

• A “mobile” component:
 – Provides the user facing interactions
 – Interacts with augmentation nodes

• A node is a publicly available storage and compute node
Application interaction model

• As updates to data happen in the wild:
 – Changes propagate back to the server component
 – Server component deals with data semantics

• The moving cloud should support a simple set of APIs
 – Pushing data into the service
 – Accessing data from nodes
 – Harvesting state from nodes
 – Versioning data pieces
 – Providing contextual access information
Mobility

• Several models for capturing human mobility

• Algorithms to predict next location of individuals
 – Some with very good success, close to 90%

• We worked on adding time bounds to location prediction
 – Important for proactive data delivery
 – Provides actionable information
 – Needed to deliver fresh data
Mobility

- Approaches:
 - Fingerprints to identify distinct routes
 - Probabilistically analyzing associated route times

- A route is a recorded mobility edge between two nodes
 - Has an identifying precedent (its fingerprint)
 - A measured time of travel
Time augmentation

• M captures the statistical distribution of route times
 – Used to estimate expected route time

• For the fingerprint, we use the *previous* two locations
 – For the following route, (A,B) is used as the fingerprint:
 – A fingerprint is not unique, can lead to multiple routes
Time augmentation

• A second order Markov chain to represent fingerprints
 – A fingerprint matrix
 – A sparse matrix used to decide on route choices

• The Markov chain is used to select next possible route
 – Statistical distribution is used to estimate route time

• Capture deviation from ground truth to estimate error
 – Used to establish time bound confidence
 – Good first results with the CROWDAD mobility data
Contextual access behavior

• Data access patterns used for system design
 – Temporal and spatial locality in access
 – Clusters of files accessed together

• We posit access can be correlated with context of access
 – For example: location and time
 – “office data” vs. “home data”

• Patterns emerge over time, and can be used for delivery
Applications in challenged networks

• Predictors work well in the absence of detailed location
 – Location at the granularity of internet kiosks, for example

• Pushing data proactively reduces access latency

• However, special sensitivity to prediction confidence
 – Since resources are limited to begin with

• We have modified Sulula to support this style of delivery
A few challenges/directions

• **Consistency models**

• Data that was consistent at delivery might not remain so

• Harvesting residual state from nodes is important

• Vertical and horizontal consistency

• Need robust versioning and consistency
Challenges

• Improving prediction certainty

• Especially important in constrained environments

• Utility models for deciding data placement

• Dealing with phase changes in human mobility
 – Quick learning when errors increase
 – Enough memory to revert back to old routines
Challenges

• System level support for modeling access context

• A lot of work in the space of application hints
 – For optimizing network and energy use

• Capturing and communicating patterns in access context
Thank you!

Azarias Reda
azarias@umich.edu