Tag-based Information Flow Analysis for Document Classification in Provenance

Jyothsna Rachapalli, Murat Kantarcioglu and Bhavani Thuraisingham

The University of Texas at Dallas
• **We propose a tagging mechanism:**
 – As a stepping stone towards our vision of secure provenance
 – To track the flow of sensitive information in a provenance graph
 – To automate the process of document classification
Motivation

• A crucial aspect of Intelligence/Health-care domain is:
 – manage and protect sensitive information effectively and efficiently

• Confidential data leaks are one of the worst kinds of leaks:
 – can cause serious damage to organizations

• Therefore, it becomes imperative to detect and manage such leaks efficiently
Open Provenance Model (OPM)

- Tagging mechanism comprises of inference rules based on OPM
- Open Provenance Model
 - is a general model of provenance
 - defines provenance in a precise, technology-agnostic manner
 - designed to allow provenance information to be exchanged between systems facilitating interoperability, by means of a shared provenance model
 - models provenance as a directed acyclic graph that captures causal relationships
- We build our tagging mechanism based on OPM,
 - to make it independent of any specific domain or technology such as databases, workflows or distributed systems
Open Provenance Model

• OPM graph consists nodes and dependencies
 – Artifacts
 – Agents
 – Processes
• The dataflow oriented view comprises of artifacts and “was derived from” edges connecting them.
• We propose a property called tag
 – to annotate an artifact

<table>
<thead>
<tr>
<th>subject:</th>
<th>an artifact</th>
</tr>
</thead>
<tbody>
<tr>
<td>property:</td>
<td>http://openprovenance.org/property#tag</td>
</tr>
<tr>
<td>value:</td>
<td>an Integer</td>
</tr>
<tr>
<td>meaning:</td>
<td>Represents Artifact rating or priority</td>
</tr>
</tbody>
</table>
Tag-based Mechanism

• We state two inference rules based on dataflow oriented view
 – In Single Source Derivation, an artifact is known to be derived from only one other artifact
 – In Multi-Source Derivation, an artifact is known to be derived from more than one artifact

• We then propose an implementation scheme using
 • Web Ontology Language (OWL)
 • Semantic Web Rule Language (SWRL).
 • Query Language - SPARQL
Single Source Derivation:

• If Artifact A1 is annotated with tag “t” and artifact A2 was derived from A1
 • then artifact A2 is annotated with tag t as well

• Artifact(?a1)\~Artifact(?a2)\~tag(?a1,?t)\~wasDerivedFrom(?a2, ?a1)
 --> tag(?a2, ?t)
Tag Propagation Rules

Multi-Source derivation

• If artifact A was derived from artifacts $A_1, A_2, A_3, ..., A_n$, annotated with tags “t1”, “t2”, “t3”, ..., “tn”,
 • then artifact A is annotated with tag t_x, (highest priority tag)

• $\text{Artifact}(?a_1) \land \text{Artifact}(?a_2) \land \text{tag}(?a_1, ?t_1) \land \text{tag}(?a_2, ?t_2) \land \text{wasDerivedFrom}(?a_2, ?a_1) \land \text{swrlb:greaterThan}(?t_1, ?t_2) \\ \rightarrow \text{tag}(?a_2, ?t_1)$
<table>
<thead>
<tr>
<th>Classification</th>
<th>Tag Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-secret</td>
<td>4</td>
</tr>
<tr>
<td>Secret</td>
<td>3</td>
</tr>
<tr>
<td>Confidential</td>
<td>2</td>
</tr>
<tr>
<td>Unclassified</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend:
- `opm:wasGeneratedBy`
- `opm:used`
- `opm:wasControlledBy`
- Artifact
- Process
- Agent
Tag Propagation – Intelligence Use-case

Intelligence Use-case

Data-flow view
Sample SPARQL Queries

<table>
<thead>
<tr>
<th>Description</th>
<th>SPARQL Queries</th>
</tr>
</thead>
</table>
| • List all the topsecret documents | SELECT ?x
WHERE {?x opm:tag "4" } |
| • List all the topsecret documents generated within time interval t1 and t2.| SELECT ?x
WHERE {?x opm:tag "4" . ?x opm:time ?t . FILTER {(?t >= t1) && (?t <= t2) }} |
| • What is the classification level of mil:doc1 | SELECT ?y
WHERE {mil:doc1 opm:tag ?y} |
| • List all the documents from which cia:report1 was derived along with their classification levels | SELECT ?y ?z
WHERE {cia:report1 opm:wasDerivedFrom ?y . ?y opm:tag ?z.} |
Conclusion

• We proposed a tag-based mechanism to track the flow of sensitive/valuable information
 – default tag propagation rules for OPM; can be overridden with custom rules if needed
• It can help with decisions such as:
 – Providing Access Control
 – Sanitization
 – Scoping provenance: Recording fine-grained provenance information for data labeled with high priority tags and recording minimum required provenance information for data labeled with low priority tags