7th USENIX Workshop on Offensive Technologies

, AUGUST 13, 2013
WASHINGTON, D.C.
usenix

Truncating TLS Connections to Violate
Beliefs in Web Applications

Ben Smyth & Alfredo Pironti

WOOT
13 Aug 2013 L

y 4

http://www.bensmyth.com h%_

http://alfredo.pironti.eu/research/ INVENTEURS DU MONDE NUMERIQUE

Web application state

Client perceived state Server stored state

Your message has been sent. View message

—————

ttps:/[WWW. :
\ddreSS%@___:_______ TLS security
[Application]
Security:
» Server (and client) authentication l

« Confidentiality
» Integrity: messages received as sent [Epie l I T]
* single connection

Termination modes:
* Graceful closure
« all messages received as sent

» fatal closure e.qg. after a corrupt message
 a prefix of messages received as sent

Truncating TLS connections

failure to properly close a connection no longer requires that a session not be
resumed [...] to conform with widespread implementation practice”
RFC 5246 — TLS specification

Consider a wire transfer to “Charlie's Angels”: Server ignores:

* termination mode
POST /wire_transfer.php HTTP/1.1 - Content-Length field
Host: mybank.com
Content-Type: application/x-www-form-urlencoded Fix:
Content-Length: 40 * wire transfers upon
amount=1000&recipient=Charlie%27s_Angels graceful closure only

» check lengths
Suppose the request is fragmented by TLS

1)POST [...] recipient=Charlie Attack works against Apache
2)%27s_Angels

Attack: Drop the 2" fragment to transfer money to Charlie.

Henceforth, we consider truncation attacks which drop messages, rather than fragments

Challenges for web applications

Web applications:

Browsers maintain multiple
connections (to load content

in parallel, for example)

TLS provides:
No integrity guarantees

across multiple connections

hence, ordering issues
between connections

L “w“ < 2 ‘ = |-| console HTML CSS Scipt DOM | Netv (P =]E[O]
W | Clear persist |[AN] HTML €SS U5 XHR Images Flash Media

+ GET secondar 200 OK getfirebug.com 1308

+ GET divider.p 200 OK 3KkB

GET TitilliumP 200 OK 3KB

+ GET Titilliumt 2 26.4KB

+ GET Intro2FB 2 4KB

* GET del-linkrc 2.5KB

+ GET firebugne 2 1KB

+ GET mozilla-k 2 89 B

+ GET footer-b¢ 2 3B

GET firebug-t 200 O 2kB B 522

+ GET Intro2FB. 206 Partial Content getfirebug.com .7KB 199ms

GET Intro2FB. getfirebug.com EIE ad |
38 requests 262.5KB (25.7 KB from cache) 225 -
Transferring data from getfirebug.com... —— ¥

Adversary model (standard):
* Adversary has full control
of the network
* i.e.read, delete, and
Inject messages

Contribution

Attacks which truncate TLS connections to exploit logical web
application flaws, enabling:

« Cast votes [on behalf of honest voters] in Helios elections
 Full control of Microsoft Live accounts
« Temporary access to Google accounts

We suspect our insights will lead to the discovery of further attacks.

Helios electronic voting system

Helios is a verifiable e-voting system

« Catholic University of Louvain 2009

presidential election:
« ~4000 votes / 25000 voters

* |ACR 2011+onwards board election
* 621 votes / 1484 voters (2011)
* Princeton University 2009+onwards
for student government

Cryptographic proofs of security!

Verifiability enables us to
use untrusted voting

machines and check

afterwards that the
claimed result is valid

Helios: Overview

(Bulletin Board

Ballot construction and authentication handled by a voting machine

Permits re-voting: cast arbitrarily many ballots/count last

Helios: Ballot casting

1) REQUESTS https://vote.heliosvoting.org/helios/elections/<<id>>/cast done
Response: 200 - OK; HTML payload:

<p>For your safety, we have logged you out.</p>
<iframe border="0" src="/auth/logout" frameborder="0" height="0" width="0">

</iframe>

2) REQUESTS https://vote.heliosvoting.org/auth/logout
Response: 302 - Moved Temporarily
Location[http://vote.heliosvoting.org/]

Notification of sign-out before voting
machine makes the request!

3) Truncate sign-out request
. . Dropping IP packets demo — Vote Successfully Cast!
4) Use voting machine to cast a new vote Cormin o v s st
No TLS protection: sign-out request (2) o —
and adversary (4) use different P
connections. Fix: (1) & (2) atomic.

A video demonstrating this attack will be available online.

Microsoft Live accounts

Setting:
« Shared computer (e.g., public library, work place, ...)
« Trusted computer, i.e., not tampered with
« Adversary accesses computer after honest user has finished

Video Demo

(Live demos are too stressful!)

The video will be available online.

Microsoft Live accounts

Setting:
« Shared computer (e.g., public library, work place, ...)
« Trusted computer, i.e., not tampered with
« Adversary accesses computer after honest user has finished

Notification of sign-out before server receives
request (client's belief # server's belief)!

« Truncate sign-out

« Access account on another connection

Microsoft Live accounts

Client Authentication Servers

Beginljlogout

JScode

You've signe

<€

Fixes:
 Centralize authentication; or
* Chain sign-out requests

Google accounts

Setting: Shared computer (e.g., public library, work place, ...)

1) GET https://accounts.google.com/Logout?continue=https://www.google.com/webhp
Response: 302 - Moved Temporarily,
Location[http://www.google.com/accounts/Logout2?ilo=1&ils=mail,s.FR&ilc=0&

continue=https://www.google.com/webhp?zx=1388193849]

2) GET http://www.google.com/accounts/Logout2?ilo=1&ils=mail,s.FR&ilc=0
&continue=https://www.google.com/webhp?zx=1388193849
Response: 200 - OK; HTML payload:
<body onload="doRedirect()">
<script type="text/javascript">
function doRedirect() {
location.replace("http://www.google.fr/accounts/Logout2?ilo=1&ils=s.FR&
ilc=l&continue=https://www.google.com/webhp?zx=1076119961");
}
</script>
<img width="0" height="0" alt="Sign Out"
src="https://mail.google.com/mail?logout=img&zx=-2531125006460954395">
</body>

3) GET https://mail.google.com/mail?logout=img&zx=-2531125006460954395
Response: 200 - OK; a one pixel gif.

4)

Google accounts: Attack

Setting: Shared computer (e.g., public library, work place, ...)

<body onload="doRedirect()">
<script type="text/javascript">
function doRedirect() {
location.replace("http://www.google.fr/accounts/Logout2?ilo=1&ils=s.FR&
ilc=l&continue=https://www.google.com/webhp?zx=1076119961");

}

</script>

<img width="0" height="0" alt="Sign Out"
src="https://mail.google.com/mail?logout=img&zx=-2531125006460954395">

</body>

Notification of sign-out before server receives request!
* Truncate Gmail sign-out with TCP reset
« (TCP drop hangs the browser)
- Fatal connection closure ignored
* Access Gmail on another connection O)
* House-keeping terminates (~5mins) e
Fixes:
« Handle fatal connection closure; or
° Centralize auth. or Chain Sign_outs A video demonstrating this attack will be available online.

Summary

We exploit flaws in sign-out procedures to prevent termination of
sessions, whilst notifying the user of success.

« Attacks against Helios, Google & Microsoft
Consequently, even frusted shared computers offer no security!

Fixes proposed, therefore trusted shared computers offer security.

All vulnerabilities have been disclosed,;
but none have been fixed yet.

De-synchronization of client/server state as attack vector.
* Further attacks?

» Better programming practices?

Thank you!
Questions?

Y 4

http://www.bensmyth.com d 7 7
http://alfredo.pironti.eu/research/ W

INVENTEURS DU MONDE NUMERIQUE

