
LoadIQ: Learning to Identify Workload Phases from a
Live Storage Trace

Pankaj Pipada, Achintya Kundu, K. Gopinath, Chiranjib Bhattacharyya†

Sai Susarla, P. C. Nagesh‡

†Indian Institute of Science
Bangalore

‡NetApp

13th June 2012

Outline

1 Motivation

2 Related work

3 Problem definition

4 Methodology

5 Evaluation

6 Conclusions

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 1 / 24

Motivation

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 2 / 24

Why Context?

• Application:
I E-commerce: browsing vs. shopping phase [Zhang, Riska, and Riedel 2008]

I Customize storage SLOs to the workload characteristics at hand.
I DB: OLTP vs. backup/maintenance phase

I Tune storage-level read-ahead.

• Host:
I Cache type (DRAM or Flash)? Size?

I Use to avoid wasted caching on shared storage.
I SNFS, HDFS, Lustre and GPFS

I Use file system layout knowledge to optimize storage.

I Differentiated storage services [Mesnier and Akers 2011 SOSP].

Detecting such phase transitions within an application has been problematic [Gu
and Verbrugge 2006].

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 3 / 24

Related work

• Large number of studies to get aggregate information about file systems
through trace analysis [Baker et al. 1991; Leung et al. 2008; Roselli, Lorch,
and Anderson 2000].

I As we need to detect specific patterns within an application, aggregate
information about file systems is not useful.

• Strong correlation between high-level application context and the IO patterns
generated [Riska and Riedel 2006; Zhang, Riska, and Riedel 2008].

I Need such correlation for application phase detection.

• Inferring the sequentiality of workloads and access patterns using block traces
[Madhyastha and Reed 1997].

I Dynamically drives prefetching and caching decisions.

• The work closest in spirit to this work: Identifying workloads from NFS traces
[Yadwadkar et al. 2010].

I Uses opcode sequence for classification.
I Limited applicability in VM environments where most requests are reads and

writes only.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 4 / 24

Related work

• Large number of studies to get aggregate information about file systems
through trace analysis [Baker et al. 1991; Leung et al. 2008; Roselli, Lorch,
and Anderson 2000].

I As we need to detect specific patterns within an application, aggregate
information about file systems is not useful.

• Strong correlation between high-level application context and the IO patterns
generated [Riska and Riedel 2006; Zhang, Riska, and Riedel 2008].

I Need such correlation for application phase detection.

• Inferring the sequentiality of workloads and access patterns using block traces
[Madhyastha and Reed 1997].

I Dynamically drives prefetching and caching decisions.

• The work closest in spirit to this work: Identifying workloads from NFS traces
[Yadwadkar et al. 2010].

I Uses opcode sequence for classification.
I Limited applicability in VM environments where most requests are reads and

writes only.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 4 / 24

Related work

• Large number of studies to get aggregate information about file systems
through trace analysis [Baker et al. 1991; Leung et al. 2008; Roselli, Lorch,
and Anderson 2000].

I As we need to detect specific patterns within an application, aggregate
information about file systems is not useful.

• Strong correlation between high-level application context and the IO patterns
generated [Riska and Riedel 2006; Zhang, Riska, and Riedel 2008].

I Need such correlation for application phase detection.

• Inferring the sequentiality of workloads and access patterns using block traces
[Madhyastha and Reed 1997].

I Dynamically drives prefetching and caching decisions.

• The work closest in spirit to this work: Identifying workloads from NFS traces
[Yadwadkar et al. 2010].

I Uses opcode sequence for classification.
I Limited applicability in VM environments where most requests are reads and

writes only.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 4 / 24

Related work

• Large number of studies to get aggregate information about file systems
through trace analysis [Baker et al. 1991; Leung et al. 2008; Roselli, Lorch,
and Anderson 2000].

I As we need to detect specific patterns within an application, aggregate
information about file systems is not useful.

• Strong correlation between high-level application context and the IO patterns
generated [Riska and Riedel 2006; Zhang, Riska, and Riedel 2008].

I Need such correlation for application phase detection.

• Inferring the sequentiality of workloads and access patterns using block traces
[Madhyastha and Reed 1997].

I Dynamically drives prefetching and caching decisions.

• The work closest in spirit to this work: Identifying workloads from NFS traces
[Yadwadkar et al. 2010].

I Uses opcode sequence for classification.
I Limited applicability in VM environments where most requests are reads and

writes only.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 4 / 24

Our approach

• Identify any set of specific patterns based on past training.
I Not just sequential or any particular access pattern

• A generic technique that can work for a variety of applications and is robust
against variations in environment and configuration.

I No dependence on specific heuristics for a specific application

• Applicable in VM environments.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 5 / 24

Our approach

• Identify any set of specific patterns based on past training.
I Not just sequential or any particular access pattern

• A generic technique that can work for a variety of applications and is robust
against variations in environment and configuration.

I No dependence on specific heuristics for a specific application

• Applicable in VM environments.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 5 / 24

Our approach

• Identify any set of specific patterns based on past training.
I Not just sequential or any particular access pattern

• A generic technique that can work for a variety of applications and is robust
against variations in environment and configuration.

I No dependence on specific heuristics for a specific application

• Applicable in VM environments.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 5 / 24

Problem definition

• Build a tool to track workload phase shifts in real-time (every minute) from a
live trace feed and perform trace annotation.

• Desired properties:

I Non-intrusive

I Dependable: Accurately discriminate among known classes of workload phases.

I Extensible: Support augmenting new phase types.

I Automated: Identify phases in near real-time to support online adaptation,
where manual intervention is impractical.

I Robust against inevitable flux in real-world workload patterns due to variations
in intensity, time spread and client-side or network environment.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 6 / 24

Problem definition

• Build a tool to track workload phase shifts in real-time (every minute) from a
live trace feed and perform trace annotation.

• Desired properties:

I Non-intrusive

I Dependable: Accurately discriminate among known classes of workload phases.

I Extensible: Support augmenting new phase types.

I Automated: Identify phases in near real-time to support online adaptation,
where manual intervention is impractical.

I Robust against inevitable flux in real-world workload patterns due to variations
in intensity, time spread and client-side or network environment.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 6 / 24

Problem definition

• Build a tool to track workload phase shifts in real-time (every minute) from a
live trace feed and perform trace annotation.

• Desired properties:

I Non-intrusive

I Dependable: Accurately discriminate among known classes of workload phases.

I Extensible: Support augmenting new phase types.

I Automated: Identify phases in near real-time to support online adaptation,
where manual intervention is impractical.

I Robust against inevitable flux in real-world workload patterns due to variations
in intensity, time spread and client-side or network environment.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 6 / 24

Problem definition

• Build a tool to track workload phase shifts in real-time (every minute) from a
live trace feed and perform trace annotation.

• Desired properties:

I Non-intrusive

I Dependable: Accurately discriminate among known classes of workload phases.

I Extensible: Support augmenting new phase types.

I Automated: Identify phases in near real-time to support online adaptation,
where manual intervention is impractical.

I Robust against inevitable flux in real-world workload patterns due to variations
in intensity, time spread and client-side or network environment.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 6 / 24

Problem definition

• Build a tool to track workload phase shifts in real-time (every minute) from a
live trace feed and perform trace annotation.

• Desired properties:

I Non-intrusive

I Dependable: Accurately discriminate among known classes of workload phases.

I Extensible: Support augmenting new phase types.

I Automated: Identify phases in near real-time to support online adaptation,
where manual intervention is impractical.

I Robust against inevitable flux in real-world workload patterns due to variations
in intensity, time spread and client-side or network environment.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 6 / 24

Problem definition

• Build a tool to track workload phase shifts in real-time (every minute) from a
live trace feed and perform trace annotation.

• Desired properties:

I Non-intrusive

I Dependable: Accurately discriminate among known classes of workload phases.

I Extensible: Support augmenting new phase types.

I Automated: Identify phases in near real-time to support online adaptation,
where manual intervention is impractical.

I Robust against inevitable flux in real-world workload patterns due to variations
in intensity, time spread and client-side or network environment.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 6 / 24

Problem definition

• Build a tool to track workload phase shifts in real-time (every minute) from a
live trace feed and perform trace annotation.

• Desired properties:

I Non-intrusive

I Dependable: Accurately discriminate among known classes of workload phases.

I Extensible: Support augmenting new phase types.

I Automated: Identify phases in near real-time to support online adaptation,
where manual intervention is impractical.

I Robust against inevitable flux in real-world workload patterns due to variations
in intensity, time spread and client-side or network environment.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 6 / 24

Components of a trace

NFS Trace:

SAN Trace:

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 7 / 24

Similarity based classification

Set of objects: X

Similarity function: s : X × X → R

Training Data: { x1, x2, x3, x4, x5, x6, x7 }

Test Input: x

Given: s(x, x1), . . . , s(x, x4), s(x, x5), . . . , s(x, x7)

Q1: How to define s(., .) for storage traces ?
Q2: How to predict the class of x ?

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 8 / 24

Similarity using offset shift histograms

• Extract offset fields from the NFS trace’s READ and WRITE requests.

• Compute a histogram out of the absolute difference between each successive
offset fields (i.e, offset shift).

• Quantize the offset shifts into their nearest bin sizes in powers of 2, i.e., sizes
of 21, 22, 23, . . . bytes.

• Normalize the histograms to eliminate unwanted effects due to different trace
lengths.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 9 / 24

Similarity using offset shift histograms

• Given two histograms H1 and H2, a similarity score is computed as follows:

S(H1,H2) = c −
L∑

i=1

[H1(i)− H2(i)]2

H1(i) + H2(i)

where L is the number of bins and c is a constant representing the average
similarity across all training traces.

• Given a similarity score between any two traces, a similarity matrix is
constructed across all the representative traces.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 10 / 24

Support Vector Machine (SVM)

Training Data: { (x1, c1), (x2, c2), . . . (xn, cn) }

Test Data: x

- -SVM Training Algorithm

Kernel Matrix

K ∈ Rn×n

Class labels
c1, . . . , cn

α1, . . . , αn

Bias b

Support Vector
Coefficients

Decision function: f (x) =
∑n

i=1 αi ci k(x, xi) + b , αi ≥ 0, b ∈ R

SVM Classifier: sign (f (x))

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 11 / 24

Linear classification using SVM

...

.....
. .

..

. ..
.

..
.
.

.

... .. .
.

.
. .

...

.
.

.

..
..

.

.
.

..

Margin.
.

. ..

Decision boundary

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 12 / 24

Nonlinear classification using SVM

.

.

.

.

.

.

.
.

.
.

.
.

.

.

.

.

.
.

.

. .
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 13 / 24

Kernel

Similarity matrix: Symmetric but not guaranteed to be positive semidefinite.

S =

s(x1, x1) s(x1, x2) . . . s(x1, xn)
s(x2, x1) s(x2, x2) . . . s(x2, xn)

...
...

.
s(xn, x1) s(xn, x2) . . . s(xn, xn)

 ∈ Rn×n

Kernel matrix: A PSD matrix achieved by setting the negative eigen-values of
the similarity matrix to zero [Chen, Gupta, and Recht 2009].

K =

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

.
k(xn, x1) k(xn, x2) . . . k(xn, xn)

 ∈ Rn×n

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 14 / 24

Workflow

new trace

offset
histogram
generator

similarity
computation
engines

training sets
Classifier 1

Classifier 2

Classifier k-1

Classifier-k

Majority
Voting

Figure: Block diagram for classifying m phases. Number of classifiers k = 1
2
m(m − 1).

• A trace belongs to a class if and only if number of votes in its favor is exactly
m − 1; otherwise it belongs to class Unknown.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 15 / 24

Online self correction

• In an online deployment, over time, the trace snippets that the SVM based
multi-class classifier flags as ‘Unknown’ are collected.

• These are labeled with a special ‘Unknown’ class label and the system is
re-trained by augmenting it with this class.

• Past snippets are re-classified to see if any of them join this class.

• This works well in practice.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 16 / 24

Distinguishing phases in a database workload

• Workload used: TPC-DS
I phases considered: Load, Query, Indexing, Maintenance.

• PostgreSQL database runs inside a VM with 4GB RAM available and the
image residing on a NFS server.

• The VM’s host machine is an 8-core Xeon-5520 with 8GB RAM.

• For training LoadIQ, traces are collected while the database goes through
various phases and each trace is labeled with its phase name.

• The collected traces are divided into 60-second snippets and read-write
histograms are generated for each.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 17 / 24

Results: Fully trained system

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 18 / 24

Results: Iterative training over Unknown traces

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 19 / 24

Phases in a production OLAP workload

• Aim: Use LoadIQ to automate detecting the recurrence of special/anomalous
workload behaviors in a production environment.

• Workload: A production enterprise data warehousing application in a 10-node
cluster configured to use a SAN backend.

• 50 LUNs each of size 20GB.

• Traces: Post-host-cache SCSI request trace on all LUNs
I 188K reads and 250K writes per LUN spread over 56 minutes.

• Phases considered: Hash table accesses and sequential IO bursts.

• Trace collection time: 60secs

• Analysis time: 4secs

• Retraining for “Unknown” class: 4secs

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 20 / 24

Spotting special workload behavior: OLAP

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 21 / 24

Interleaved sequential IO: OLAP

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 22 / 24

Conclusions

• A ML-based tool for identifying various phases in an application, from its live
storage trace.

I Accuracy > 93% in many cases.
I Can flag certain traces as ‘Unknown’. Retraining can be used to improve

accuracy.

• Open questions:

I How to separate concurrent IO patterns in a combined trace?
I A quantifiable confidence measure of the classification output is needed. Can

this be provided?
I How to exploit phase knowledge in system design?

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 23 / 24

Conclusions

• A ML-based tool for identifying various phases in an application, from its live
storage trace.

I Accuracy > 93% in many cases.
I Can flag certain traces as ‘Unknown’. Retraining can be used to improve

accuracy.

• Open questions:

I How to separate concurrent IO patterns in a combined trace?
I A quantifiable confidence measure of the classification output is needed. Can

this be provided?
I How to exploit phase knowledge in system design?

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 23 / 24

References

Baker, M. et al. (1991). “Measurements of a Distributed File System”. In: Proceedings of the 13th Symposium
on Operating Systems Principles.

Chen, Y., M. R. Gupta, and B. Recht (2009). “Learning Kernels from Indefinite Similarities”. In: International
Conference on Machine Learning.

Gu, D. and C. Verbrugge (2006). A survey of phase analysis: Techniques, evaluation and applications.
Tech. rep. Citeseer.

Leung, A. et al. (2008). “Measurement and Analysis of Large-Scale File System Workloads”. In: Proceedings
of the USENIX 2008 Annual Technical Conference.

Madhyastha, T. and D. Reed (1997). “Input/Output Access Pattern Classification Using Hidden Markov
Models”. In: Workshop on Input/Output in Parallel and Distributed Systems.

Mesnier, Michael P. and Jason B. Akers (2011). “Differentiated storage services”. In: SIGOPS Oper. Syst.
Rev. 45.1 (Feb. 2011), pp. 45–53. issn: 0163-5980. doi: 10.1145/1945023.1945030. url:
http://doi.acm.org/10.1145/1945023.1945030.

Riska, A. and E. Riedel (2006). “Disk Drive Level Workload Characterization”. In: Proceedings of the USENIX
2006 Annual Technical Conference.

Roselli, D., J. Lorch, and T. E. Anderson (2000). “A comparison of file system workloads”. In: Proceedings of
the USENIX 2000 Annual Technical Conference. San Diego, California.

Yadwadkar, N. et al. (2010). “Discovery of Application Workloads from Network File Traces”. In: Proceedings
of the Eighth USENIX Conference on File and Storage Technologies (FAST 2010).

Zhang, Xi, Alma Riska, and Erik Riedel (2008). “Characterization of the E-commerce Storage Subsystem
Workload”. In: QEST, pp. 297–306.

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 24 / 24

http://doi.acm.org/10.1145/1945023.1945030

Grateful acknowledgments

• IISc GARP funds

• USENIX student grant program

• NetApp research grant

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 24 / 24

Thank You !!!

	Motivation
	Related work
	Problem definition
	Methodology
	Evaluation
	Conclusions
	References

