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Why Context?

• Application:
I E-commerce: browsing vs. shopping phase [Zhang, Riska, and Riedel 2008]

I Customize storage SLOs to the workload characteristics at hand.
I DB: OLTP vs. backup/maintenance phase

I Tune storage-level read-ahead.

• Host:
I Cache type (DRAM or Flash)? Size?

I Use to avoid wasted caching on shared storage.
I SNFS, HDFS, Lustre and GPFS

I Use file system layout knowledge to optimize storage.

I Differentiated storage services [Mesnier and Akers 2011 SOSP].

Detecting such phase transitions within an application has been problematic [Gu
and Verbrugge 2006].
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Related work

• Large number of studies to get aggregate information about file systems
through trace analysis [Baker et al. 1991; Leung et al. 2008; Roselli, Lorch,
and Anderson 2000].

I As we need to detect specific patterns within an application, aggregate
information about file systems is not useful.

• Strong correlation between high-level application context and the IO patterns
generated [Riska and Riedel 2006; Zhang, Riska, and Riedel 2008].

I Need such correlation for application phase detection.

• Inferring the sequentiality of workloads and access patterns using block traces
[Madhyastha and Reed 1997].

I Dynamically drives prefetching and caching decisions.

• The work closest in spirit to this work: Identifying workloads from NFS traces
[Yadwadkar et al. 2010].

I Uses opcode sequence for classification.
I Limited applicability in VM environments where most requests are reads and

writes only.
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Our approach

• Identify any set of specific patterns based on past training.
I Not just sequential or any particular access pattern

• A generic technique that can work for a variety of applications and is robust
against variations in environment and configuration.

I No dependence on specific heuristics for a specific application

• Applicable in VM environments.
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Problem definition

• Build a tool to track workload phase shifts in real-time (every minute) from a
live trace feed and perform trace annotation.

• Desired properties:

I Non-intrusive

I Dependable: Accurately discriminate among known classes of workload phases.

I Extensible: Support augmenting new phase types.

I Automated: Identify phases in near real-time to support online adaptation,
where manual intervention is impractical.

I Robust against inevitable flux in real-world workload patterns due to variations
in intensity, time spread and client-side or network environment.
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Components of a trace

NFS Trace:

SAN Trace:
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Similarity based classification

Set of objects: X

Similarity function: s : X × X → R

Training Data: { x1, x2, x3, x4, x5, x6, x7 }

Test Input: x

Given: s(x, x1), . . . , s(x, x4), s(x, x5), . . . , s(x, x7)

Q1: How to define s(., .) for storage traces ?
Q2: How to predict the class of x ?
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Similarity using offset shift histograms

• Extract offset fields from the NFS trace’s READ and WRITE requests.

• Compute a histogram out of the absolute difference between each successive
offset fields (i.e, offset shift).

• Quantize the offset shifts into their nearest bin sizes in powers of 2, i.e., sizes
of 21, 22, 23, . . . bytes.

• Normalize the histograms to eliminate unwanted effects due to different trace
lengths.
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Similarity using offset shift histograms

• Given two histograms H1 and H2, a similarity score is computed as follows:

S(H1,H2) = c −
L∑

i=1

[H1(i)− H2(i)]2

H1(i) + H2(i)

where L is the number of bins and c is a constant representing the average
similarity across all training traces.

• Given a similarity score between any two traces, a similarity matrix is
constructed across all the representative traces.
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Support Vector Machine (SVM)

Training Data: { (x1, c1), (x2, c2), . . . (xn, cn) }

Test Data: x

- -SVM Training Algorithm

Kernel Matrix

K ∈ Rn×n

Class labels
c1, . . . , cn

α1, . . . , αn

Bias b

Support Vector
Coefficients

Decision function: f (x) =
∑n

i=1 αi ci k(x, xi ) + b , αi ≥ 0, b ∈ R

SVM Classifier: sign ( f (x) )
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Linear classification using SVM
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Nonlinear classification using SVM
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Kernel

Similarity matrix: Symmetric but not guaranteed to be positive semidefinite.

S =


s(x1, x1) s(x1, x2) . . . s(x1, xn)
s(x2, x1) s(x2, x2) . . . s(x2, xn)

...
...

. . . . . .
s(xn, x1) s(xn, x2) . . . s(xn, xn)

 ∈ Rn×n

Kernel matrix: A PSD matrix achieved by setting the negative eigen-values of
the similarity matrix to zero [Chen, Gupta, and Recht 2009].

K =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

. . . . . .
k(xn, x1) k(xn, x2) . . . k(xn, xn)

 ∈ Rn×n
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Workflow

new trace

offset
histogram
generator

similarity
computation
engines

training sets
Classifier 1

Classifier 2

Classifier k-1

Classifier-k

Majority
Voting

Figure: Block diagram for classifying m phases. Number of classifiers k = 1
2
m(m − 1).

• A trace belongs to a class if and only if number of votes in its favor is exactly
m − 1; otherwise it belongs to class Unknown.
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Online self correction

• In an online deployment, over time, the trace snippets that the SVM based
multi-class classifier flags as ‘Unknown’ are collected.

• These are labeled with a special ‘Unknown’ class label and the system is
re-trained by augmenting it with this class.

• Past snippets are re-classified to see if any of them join this class.

• This works well in practice.
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Distinguishing phases in a database workload

• Workload used: TPC-DS
I phases considered: Load, Query, Indexing, Maintenance.

• PostgreSQL database runs inside a VM with 4GB RAM available and the
image residing on a NFS server.

• The VM’s host machine is an 8-core Xeon-5520 with 8GB RAM.

• For training LoadIQ, traces are collected while the database goes through
various phases and each trace is labeled with its phase name.

• The collected traces are divided into 60-second snippets and read-write
histograms are generated for each.
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Results: Fully trained system
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Results: Iterative training over Unknown traces

Pankaj Pipada et al. LoadIQ: Learning to Identify Workload Phases 13th June 2012 19 / 24



Phases in a production OLAP workload

• Aim: Use LoadIQ to automate detecting the recurrence of special/anomalous
workload behaviors in a production environment.

• Workload: A production enterprise data warehousing application in a 10-node
cluster configured to use a SAN backend.

• 50 LUNs each of size 20GB.

• Traces: Post-host-cache SCSI request trace on all LUNs
I 188K reads and 250K writes per LUN spread over 56 minutes.

• Phases considered: Hash table accesses and sequential IO bursts.

• Trace collection time: 60secs

• Analysis time: 4secs

• Retraining for “Unknown” class: 4secs
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Spotting special workload behavior: OLAP
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Interleaved sequential IO: OLAP
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Conclusions

• A ML-based tool for identifying various phases in an application, from its live
storage trace.

I Accuracy > 93% in many cases.
I Can flag certain traces as ‘Unknown’. Retraining can be used to improve

accuracy.

• Open questions:

I How to separate concurrent IO patterns in a combined trace?
I A quantifiable confidence measure of the classification output is needed. Can

this be provided?
I How to exploit phase knowledge in system design?
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