On the Accurate Identification of Network Service Dependencies in Distributed Systems

Barry Peddycord III NC State University bwpeddyc@ncsu.edu @isharacomix Dr. Peng Ning NC State University pning@ncsu.edu Dr. Sushil Jajodia George Mason University jajodia@gmu.edu

NSDMiner Non-intrusive and fairly accurate Open Source Python Module http://sf.net/p/nsdminer Future work includes Making it work in real time

 Identifying remote-remote dependencies

USENIX LISA '12 #NSDMiner

This work is supported by the U.S. Army Research Office (ARO) under MURI grant W911NF-09-1-0525

Motivation

MySQL DB Remote Remote Dependency Web Portal Client Machine

Problem

Network Service Dependencies

- Defined by configuration parameters and source code
 - Each service does it differently!
- · Often very intricate and subtle
- · Hard to keep track
 - How good are YOUR docs?
- · Want to identify them automatically

Why bother?

Know thyself

- If dependencies are discovered after a failure occurs, it's too late
- · Knowing in advance
- Improves response time
- Allows pro-active action to be taken on mission-critical services
- · Networks are dynamic

Prior Work

Two Paradigms

- Patterns in the behavior of the network can model its structure
- Previous approaches fall into two categories:

| Network | Treat Acets | Trea

Example

Local-Remote Dependency

Client Machine

ropiem

A network service is a softwar application that runs on a serv and listens on a port for connections from other

Network Service Dependencies

- Defined by configuration parameters and source code
 - Each service does it differently!
- Often very intricate and subtle
- Hard to keep track
 - How good are YOUR docs?
- Want to identify them automatically

A network service is a software application that runs on a server and listens on a port for connections from other applications.

A dependency is a relationship between two services A and B such that A (the depending service) contacts B (the depended service) to complete a task.

ropiem

A network service is a softwar application that runs on a serv and listens on a port for connections from other

Network Service Dependencies

- Defined by configuration parameters and source code
 - Each service does it differently!
- Often very intricate and subtle
- Hard to keep track
 - How good are YOUR docs?
- Want to identify them automatically

Why bother?

Know thyself

- If dependencies are discovered after a failure occurs, it's too late
- Knowing in advance
 - Improves response time
 - Allows pro-active action to be taken on mission-critical services
- Networks are dynamic

Prior Work

Two Paradigms

- Patterns in the behavior of the network can model its structure
- Previous approaches fall into two categories:

Host-Based

Accurate, but intrusive

- Install an agent (i.e. a kernel module) to track socket/application behavior
 - · Magpie [OSDI 2004]
 - Pinpoint [NSDI 2004]
 - Macroscope [CoNEXT 2009]
- Intrusiveness makes them unattractive
 - Security risks
 - · Resource contention

Network-Based

Treat hosts as black boxes

- Data-mine on-the-wire network traffic to extract relationships
 - Sherlock [SIGCOMM 2007]
 - eXpose [SIGCOMM 2008]
 - Orion [OSDI 2008]
 - NSDMiner [INFOCOM 2011]
- High-false positive/false negative rates

Host-Rasea

Accurate, but intrusive

- Install an agent (i.e. a kernel module) to track socket/application behavior
 - Magpie [OSDI 2004]
 - Pinpoint [NSDI 2004]
 - Macroscope [CoNEXT 2009]
- · Intrusiveness makes them unattractive
 - Security risks
 - Resource contention

Network-Based

Treat hosts as black boxes

- Data-mine on-the-wire network traffic to extract relationships
 - Sherlock [SIGCOMM 2007]
 - eXpose [SIGCOMM 2008]
 - Orion [OSDI 2008]
 - NSDMiner [INFOCOM 2011]
- High-false positive/false negative rates

NSDIVINER

Intuition

Ranking

Confidence equals:

log(number of times A is accessed) log(number of nested A->B flows)

Post-processing

Given a Communication Graph

- Less-used services are vulnerable to false positive, false negative
- Post-processing uses overall structure to fine-tune results

Inference

The Output

List of Dependency Candidates

- Returns each network service and all of its dependency candidates
- Dependencies ordered by mostlikely to least-likely
- Should be verified by hand, so a few false positives are acceptable

Why logs?

Two Important Properties

- · Not all nested flows are equal
- Give candidates with more evidence more weight
- "every other flow" means more when it's 10000 than 100
- · Later flows are worth less
- · Is 90% less convincing than 95%?

Intuition

Kanking

Confidence equals:

log(number of times A is accessed) log(number of nested A->B flows)

Post-processing

Given a Communication Graph

- Less-used services are vulnerable to false positive, false negative
- Post-processing uses overall structure to fine-tune results

Interence

Intuition

Consider a Web Host

- Many servers are configured the same way (HTTPD) with the same dependencies (MySQL, SMTP, etc)
- Some are more popular than others, having more traffic
- Identify dependencies of less used servers by identifying 'similar' services

Algorithm

- Identify all pairs of similar services above a certain similarity threshold
- · Combine pairs into similarity groups
- Calculate agreement on dependency candidates
- Infer dependencies from members of similarity group to most agreed-upon candidates

Intuition

Consider a Web Host

- Many servers are configured the same way (HTTPD) with the same dependencies (MySQL, SMTP, etc)
- Some are more popular than others, having more traffic
- Identify dependencies of less used servers by identifying 'similar' services

Example

Observed traffic:

Ground truth: All A's depend on D's

Clustering

Intuition

Backups and Load-Balancing

- In a load-balancing cluster, a depending service will eventually utilize all cluster nodes
- In a backup-cluster, a service will use the primary nodes until they fail, then move to backup nodes
- In both cases, if a service uses one node in a cluster, it uses them all

Example

Algorithm

- Count the number of times that pairs of services are depended upon by the same service
- For services that have support above a certain threshold, these services are considered to be in clusters
- Re-interpret services that depend on services in clusters as depending on the entire cluster itself.

Intuition

Backups and Load-Balancing

- In a load-balancing cluster, a depending service will eventually utilize all cluster nodes
- In a backup-cluster, a service will use the primary nodes until they fail, then move to backup nodes
- In both cases, if a service uses one node in a cluster, it uses them all

Example

ine Output

List of Dependency Candidates

- Returns each network service and all of its dependency candidates
- Dependencies ordered by mostlikely to least-likely
- Should be verified by hand, so a few false positives are acceptable

Evaluation

Design

Monitored Network

Services	Instances	Dependencies	
Webservice (80,443)	4	2	DNS, DBMS
Webservice (80)	1	1	DNS
SSH (realm-4) (22)	5	2	Kerberos, DNS
SSH (realm-5) (22)	17	3	Kerberos, DNS, LDAP
SVN (8443)	1	4	DNS, LDAP, Port Mapper, RPC
Proxy DHCP (4011)	1	2	DNS, LDAP
DHCP (68)	1	1	DNS
Email (25)	1	2	Mail exchange, DNS
Endpoint Mapper (135)	2	3	DNS, AD, Kerberos
WDS (RPC)	1	5	DNS, AD (LDAP, port mapper, RPC, kerberos)
DFS Replication (RPC)	2	5	DNS, AD (LDAP, port mapper, RPC, kerberos)
SMB (445)	2	5	DNS, AD (LDAP, port mapper, RPC, kerberos)
TFTP (69)	1	0	
Database (3306)	2	0	

Monitored Network

Service

Webser

Webser

SSH (re

SSH (re

SVN (84

Proxy D

DHCP (

Email (2

Endpoir

WDS (F

DFS Re

SMB (4

TFTP (6

Databas

Services	Instances	Dependencies	
Webservice (80,443)	4	2	DNS, DBMS
Webservice (80)	1	1	DNS
SSH (realm-4) (22)	5	2	Kerberos, DNS
SSH (realm-5) (22)	17	3	Kerberos, DNS, LDAP
SVN (8443)	1	4	DNS, LDAP, Port Mapper, RPC
Proxy DHCP (4011)	1	2	DNS, LDAP
DHCP (68)	1	1	DNS
Email (25)	1	2	Mail exchange, DNS
Endpoint Mapper (135)	2	3	DNS, AD, Kerberos
WDS (RPC)	1	5	DNS, AD (LDAP, port mapper, RPC, kerberos)
DFS Replication (RPC)	2	5	DNS, AD (LDAP, port mapper, RPC, kerberos)
SMB (445)	2	5	DNS, AD (LDAP, port mapper, RPC, kerberos)
TFTP (69)	1	0	
Database (3306)	2	0	

NSDMiner

TP Rate vs Confidence

FP Rate vs Confidence

TP Rate vs Confidence

FP Rate vs Confidence

interence

Dependencies Recovered

Number of False Positives Inferred

ROC Curve

False Positive Rate

Clustering

Deployment

Open Source

Available on SourceForge

- Written as a Python Module
 'import nsdminer'
- Comes with a command-line interface for processing data

What's needed

Collect the Data

- Collect all network traffic from network switches
 - · Export netflows from switches
- Use packet mirroring forward and save all pcap headers of packets
- · Usually a week of packets is needed

Using NSDMiner

Just install and run!

- · Run 'nsdminer' to process your data
 - Command line options let you choose various parameters
 - Detailed in the paper and README
- Output will be a list of services, dependencies, and confidence values

Going Beyond

- Extend and improve NSDMiner using the features of the 'ndminer' Python library
- Use it in your own networks and let us know how it works for you in the SourceForge forum!

Open Source

Available on SourceForge

- Written as a Python Module
 - 'import nsdminer'
- Comes with a command-line interface for processing data

What's needed

Collect the Data

- Collect all network traffic from network switches
 - Export netflows from switches
 - Use packet mirroring forward and save all pcap headers of packets
- Usually a week of packets is needed

Using NSDMiner

Just install and run!

- Run 'nsdminer' to process your data
 - Command line options let you choose various parameters
 - Detailed in the paper and README
- Output will be a list of services, dependencies, and confidence values

Going Beyond

- Extend and improve NSDMiner using the features of the 'ndminer' Python library.
- Use it in your own networks and let us know how it works for you in the SourceForge forum!

Conclusions

NSDMiner

- Non-intrusive and fairly accurate
- Open Source Python Module
 - http://sf.net/p/nsdminer
- Future work includes
 - Making it work in real time
 - Identifying remote-remote dependencies

On the Accurate Identification of Network Service Dependencies in Distributed Systems

Barry Peddycord III NC State University bwpeddyc@ncsu.edu @isharacomix Dr. Peng Ning NC State University pning@ncsu.edu Dr. Sushil Jajodia George Mason University jajodia@gmu.edu

NSDMiner Non-intrusive and fairly accurate Open Source Python Module http://sf.net/p/nsdminer Future work includes Making it work in real time

 Identifying remote-remote dependencies

USENIX LISA '12 #NSDMiner

This work is supported by the U.S. Army Research Office (ARO) under MURI grant W911NF-09-1-0525