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Problem

Network Service Dependencies

- Defined by configuration parameters
and source code

+ Each service does it differently!

- Often very intricate and subtle
- Hard to keep track

+ How good are YOUR docs?

« Want to identify them automatically

Why bother?

Know thyself

» If dependencies are discovered after
a failure occurs, it's too late
- Knowing in advance
» Improves response time
« Allows pro-active action to be
taken on mission-critical services
« Networks are dynamic

Prior Work

Two Paradigms

- Patterns in the behavior of the
network can model its structure

« Previous approaches fall into two
categories:

Host-Based Network-Based
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Network Service Dependenc:es

- Defined by configuration parameters
and source code
- Each service does it differently!
- Often very intricate and subtle
- Hard to keep track
- How good are YOUR docs?
- Want to identify them automatically



A network service is a software
application that runs on a server
and listens on a port for
connections from other
applications.
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A dependency is a relationship
between two services A and B such
that A (the depending service)
contacts B (the depended service)
to complete a task.

'\
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Network Service Dependenc:es

- Defined by configuration parameters
and source code
- Each service does it differently!
- Often very intricate and subtle
- Hard to keep track
- How good are YOUR docs?
- Want to identify them automatically



why bother?

Know thyself

- If dependencies are discovered after
a failure occurs, it's too late
- Knowing in advance
- Improves response time
- Allows pro-active action to be
taken on mission-critical services
» Networks are dynamic
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Two Paradigms

- Patterns in the behavior of the
network can model its structure
- Previous approaches fall into two

categories:
Host-Based Network-Based

Accurate, but intrusive Treat hosts as black boxes

- Data-mine on-the-wire network traffic

« Install an agent (i.e. a kernel module)
to extract relationships

to track socket/application behavior
- Magpie [OSDI 2004] - Sherlock [SIGCOMM 2007]

« Pinpoint [NSDI 2004] - eXpose [SIGCOMM 2008]

- Macroscope [CoNEXT 2009] + Orion [OSDI 2008]

+ Intrusiveness makes them unattractive - NSDMiner [INFOCOM 2011]
= Security risks « High-false positive/false negative rates

- Resource contention
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Accurate, but intrusive

- Install an agent (i.e. a kernel module)
to track socket/application behavior
- Magpie [OSDI 2004]
- Pinpoint [NSDI 2004]
- Macroscope [CONEXT 2009]
- Intrusiveness makes them unattractive
- Security risks
- Resource contention



Network-Based

Treat hosts as black boxes

- Data-mine on-the-wire network traffic
to extract relationships
- Sherlock [SIGCOMM 2007]
- eXpose [SIGCOMM 2008]
- Orion [OSDI 2008]
- NSDMiner [INFOCOM 2011]
- High-false positive/false negative rates
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Intuition

C
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Client Fileserver Kerberos

Ranking

Confidence equals:

log( number of times A is accessed )

log( number of nested A-=B flows }

Why logs?

Two Imporiant Properties

= Mot all nested flaws are equal
= Give candidates with more evidence
e weight
+ "ewery other flow® means more
when it's 10000 than 100
= Later llows are warth less
» |5 904 less convincing than 95%7

Post-processing

Given a Communication Graph

» Less-used services are vulnerable to
false positive, false negative
- Post-processing uses overall
structure to fine-tune results
Inference Clustering

The Output

List of Dependency Candidates

+ Returns each network service and all
of its dependency candidates

- Dependencies ordered by most-
likely to least-likely

- Should be verified by hand, so a few
false positives are acceptable
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RankKing

Confidence equals:

log( number of times A is accessed )
log( number of nested A->B flows )

weight(A) = 1000

weight(D) = 1500
O

150 :
1000
(B)2(C)

weight(B) = 300 weight(C) = 1200




Post-processing

Given a Communication Graph

- Less-used services are vulnerable to
false positive, false negative

- Post-processing uses overall
structure to fine-tune results

Inference Clustering

Intuition = Example © o Algerithm -~ . Jptuition ~  Example - Algorithm
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Intuition

Consider a Web Host

- Many servers are configured the
same way (HTTPD) with the same
dependencies (MySQL, SMTP, etc)

+ Some are more popular than others,
having more traffic

« Identify dependencies of less used
servers by identifying 'similar' services

Example

Ohbserved traffic:

rfAl 1A,
M AZ A! I/\_/

shared deps

Similarity(X.Y)= total deps

\: ol W

75% Agreement 755 Agreement
— —

p
D, D, Dy
O 1 DD%\&gﬁaeme ntU

Ground truth: All A's depend on D's

Algorithm

« Identify all pairs of similar services
above a certain similarity threshold

+ Combine pairs into similarity groups

« Calculate agreement on dependency
candidates

« Infer dependencies from members of
similarity group to most agreed-upon
candidates



intuition

Consider a Web Host

- Many servers are configured the
same way (HTTPD) with the same
dependencies (MySQL, SMTP, etc)

- Some are more popular than others,
having more traffic

- Identify dependencies of less used
servers by identifying 'similar' services



EXxamplie

Observed traffic:
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Ground truth: All A's depend on D's
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Intuition

Backups and Load-Balancing

- In a load-balancing cluster, a
depending service will eventually
utilize all cluster nodes

+ In a backup-cluster, a service will use
the primary nodes until they fail, then
move to backup nodes

+ In both cases, if a service uses one
node in a cluster, it uses them all

()
IC B, 3 (B 4)

Algorithm

« Count the number of times that pairs
of services are depended upon by the
same service

- For services that have support above
a certain threshold, these services are
considered to be in clusters

- Re-interpret services that depend on
services in clusters as depending on
the entire cluster itself.



intuition

Backups and Load-Balancing

- In a load-balancing cluster, a
depending service will eventually
utilize all cluster nodes

- In a backup-cluster, a service will use
the primary nodes until they fail, then
move to backup nodes

- In both cases, if a service uses one
node in a cluster, it uses them all






lhe Output
List of Dependency Candidates

» Returns each network service and all
of its dependency candidates
- Dependencies ordered by most-

likely to least-likely
- Should be verified by hand, so a few

false positives are acceptable
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NSDMiner

TP Rate vs Confidence
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FP Rate

TP Rate vs Confidence
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Deployment

Open Source

Available on SourceForge

- Written as a Python Module
= "import nsdminer’

- Comes with a command-line

interface for processing data

What's needed

Collect the Data

« Collect all network traffic from
network switches
- Export netflows from switches
« Use packet mirroring - forward
and save all pcap headers of
packets
» Usually a week of packets is needed

Using NSDMiner

Just install and run!

» Run 'nsdminer’ to process your data
- Command line options let you
choose various parameters
= Detailed in the paper and
README
- Qutput will be a list of services,
dependencies, and confidence
values

Going Beyond

« Extend and improve NSDMiner using
the features of the 'ndminer' Python
library.

+ Use it in your own networks and let
us know how it works for you in the
SourceForge forum!



vpen dource

Available on SourceForge

- Written as a Python Module
- 'import nsdminer’

» Comes with a command-line

interface for processing data



Wwhat's needed

Collect the Data

- Collect all network traffic from
network switches
- Export netflows from switches
- Use packet mirroring - forward
and save all pcap headers of
packets
- Usually a week of packets is needed



Using NSDMiner

Just install and run!

- Run 'nsdminer’ to process your data
- Command line options let you
choose various parameters
- Detailed in the paper and
README
- Output will be a list of services,
dependencies, and confidence
values



Going Beyond

- Extend and improve NSDMiner using
the features of the 'ndminer' Python
library.

- Use it in your own networks and let
us know how it works for you in the
SourceForge forum!



conciusions

NSDMiner

- Non-intrusive and fairly accurate
- Open Source Python Module
- http://st.net/p/nsdminer
- Future work includes
- Making it work in real time
- ldentifying remote-remote
dependencies
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