
Autoplacer: Scalable Self-Tuning Data
Placement in Distributed Key-value Stores

ICAC’13

João Paiva, Pedro Ruivo, Paolo Romano, Lúıs Rodrigues

Instituto Superior Técnico / Inesc-ID, Lisboa, Portugal

June 27, 2013



Outline

Introduction

Our approach

Evaluation

Conclusions



Motivation

Collocating processing with storage can improve performance.

I Using random placement, nodes waste resources due to
node-intercommunication.

I Optimize data placement to improve locality and to reduce
remote requests.



Motivation

Collocating processing with storage can improve performance.

I Using random placement, nodes waste resources due to
node-intercommunication.

I Optimize data placement to improve locality and to reduce
remote requests.



Motivation

Collocating processing with storage can improve performance.

I Using random placement, nodes waste resources due to
node-intercommunication.

I Optimize data placement to improve locality and to reduce
remote requests.



Approaches Using Offline Optimization

Algorithm:

1. Gather access trace for all items

2. Run offline optimization algorithms on traces

3. Store solution in directory

4. Locate data items by querying directory

I Fine-grained placement

I Costly to log all accesses

I Complex optimization

I Directory creates additional network usage



Approaches Using Offline Optimization

Algorithm:

1. Gather access trace for all items

2. Run offline optimization algorithms on traces

3. Store solution in directory

4. Locate data items by querying directory

I Fine-grained placement

I Costly to log all accesses

I Complex optimization

I Directory creates additional network usage



Main challenges

Cause: Key-Value stores may handle large amounts of data

Challenges:

1. Collecting Statistics: Obtaining usage statistics in an
efficient manner.

2. Optimization: Deriving fine-grained placement for data
objects that exploits data locality.

3. Fast lookup: Preserving fast lookup for data items.



Approaches to Data Access Locality

1. Consistent Hashing (CH):
The “don’t care” approach

2. Distributed Directories:
The “care too much” approach



Consistent Hashing

Don’t care for locality: items placed deterministically according to
hash functions and full membership information.

I Simple to implement

I Solves lookup challenge by using local lookups

I No control on data placement → bad locality

I Does not address optimization challenge



Consistent Hashing

Don’t care for locality: items placed deterministically according to
hash functions and full membership information.

I Simple to implement

I Solves lookup challenge by using local lookups

I No control on data placement → bad locality

I Does not address optimization challenge



Distributed Directories

Care too much for locality: nodes report usage statistics to
centralized optimizer, placement defined in a distributed directory
(may be cached locally)

I Can solve statistics challenge using coarse statistics

I Solves optimization challenge with precise data placement
control

Hindered by lookup challenge:

I Additional network hop

I Hard to update



Distributed Directories

Care too much for locality: nodes report usage statistics to
centralized optimizer, placement defined in a distributed directory
(may be cached locally)

I Can solve statistics challenge using coarse statistics

I Solves optimization challenge with precise data placement
control

Hindered by lookup challenge:

I Additional network hop

I Hard to update



Outline

Introduction

Our approach

Evaluation

Conclusions



Our approach: beating the challenges

Best of both worlds

I Statistics Challenge: Gather statistics only for hotspot items

I Optimization Challenge: Fine-grained optimization for
hotspots

I Lookup Challenge: Consistent Hashing for remaining items



Algorithm overview

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots

2. Optimization: Decide placement for hotspots

3. Lookup: Encode / broadcast data placement

4. Move data



Algorithm overview

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots

2. Optimization: Decide placement for hotspots

3. Lookup: Encode / broadcast data placement

4. Move data



Statistics: Data access monitoring

Key concept: Top-K stream analysis algorithm

I Lightweight

I Sub-linear space usage

I Inaccurate result... But with bounded error



Statistics: Data access monitoring

Key concept: Top-K stream analysis algorithm

I Lightweight

I Sub-linear space usage

I Inaccurate result... But with bounded error



Statistics: Data access monitoring

Key concept: Top-K stream analysis algorithm

I Lightweight

I Sub-linear space usage

I Inaccurate result... But with bounded error



Algorithm overview

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots

2. Optimization: Decide placement for hotspots

3. Lookup: Encode / broadcast data placement

4. Move data



Optimization

Integer Linear Programming problem formulation:

min
∑
j∈N

∑
i∈O

X ij(cr
r rij + crwwij) + Xij(cl

r rij + clwwij) (1)

subject to:

∀i ∈ O :
∑
j∈N

Xij = d ∧ ∀j ∈ N :
∑
i∈O

Xij ≤ Sj

Inaccurate input:

I Does not provide optimal placement

I Upper-bound on error



Accelerating optimization

1. ILP Relaxed to Linear Programming problem

2. Distributed optimization

LP relaxation

I Allow data item ownership to be in [0− 1] interval

Distributed Optimization

I Partition by the N nodes

I Each node optimizes hotspots mapped to it by CH

I Strengthen capacity constraint



Accelerating optimization

1. ILP Relaxed to Linear Programming problem

2. Distributed optimization

LP relaxation

I Allow data item ownership to be in [0− 1] interval

Distributed Optimization

I Partition by the N nodes

I Each node optimizes hotspots mapped to it by CH

I Strengthen capacity constraint



Accelerating optimization

1. ILP Relaxed to Linear Programming problem

2. Distributed optimization

LP relaxation

I Allow data item ownership to be in [0− 1] interval

Distributed Optimization

I Partition by the N nodes

I Each node optimizes hotspots mapped to it by CH

I Strengthen capacity constraint



Algorithm overview

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots

2. Optimization: Decide placement for hotspots

3. Lookup: Encode / broadcast data placement

4. Move data



Lookup: Encoding placement

Probabilistic Associative Array (PAA)

I Associative array interface (keys→values)

I Probabilistic and space-efficient

I Trade-off space usage for accuracy



Probabilistic Associative Array: Usage

Building

1. Build PAA from hotspot mappings

2. Broadcast PAA

Looking up objects

I If item not in PAA, use Consistent Hashing

I If item is hotspot, return PAA mapping



Probabilistic Associative Array: Usage

Building

1. Build PAA from hotspot mappings

2. Broadcast PAA

Looking up objects

I If item not in PAA, use Consistent Hashing

I If item is hotspot, return PAA mapping



PAA: Building blocks

I Bloom Filter
Space-efficient membership test (is item in PAA?)

I Decision tree classifier
Space-efficient mapping (where is hotspot mapped to?)



PAA: Building blocks

I Bloom Filter
Space-efficient membership test (is item in PAA?)

I Decision tree classifier
Space-efficient mapping (where is hotspot mapped to?)



PAA: Properties

Bloom Filter:

I False Positives: match items that it was not supposed to.

I No False Negatives: never return ⊥ for items in PAA.

Decision tree classifier:

I Inaccurate values (bounded error).

I Deterministic response: deterministic (item→node)
mapping.



PAA: Properties

Bloom Filter:

I False Positives: match items that it was not supposed to.

I No False Negatives: never return ⊥ for items in PAA.

Decision tree classifier:

I Inaccurate values (bounded error).

I Deterministic response: deterministic (item→node)
mapping.



PAA: Properties

Bloom Filter:

I False Positives: match items that it was not supposed to.

I No False Negatives: never return ⊥ for items in PAA.

Decision tree classifier:

I Inaccurate values (bounded error).

I Deterministic response: deterministic (item→node)
mapping.



Algorithm Review

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots
Top-k stream analysis

2. Optimization: Decide placement for hotspots
Lightweight distributed optimization

3. Lookup: Encode / broadcast data placement
Probabilistic Associative Array

4. Move data



Algorithm Review

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots
Top-k stream analysis

2. Optimization: Decide placement for hotspots
Lightweight distributed optimization

3. Lookup: Encode / broadcast data placement
Probabilistic Associative Array

4. Move data



Algorithm Review

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots
Top-k stream analysis

2. Optimization: Decide placement for hotspots
Lightweight distributed optimization

3. Lookup: Encode / broadcast data placement
Probabilistic Associative Array

4. Move data



Algorithm Review

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots
Top-k stream analysis

2. Optimization: Decide placement for hotspots
Lightweight distributed optimization

3. Lookup: Encode / broadcast data placement
Probabilistic Associative Array

4. Move data



Outline

Introduction

Our approach

Evaluation

Conclusions



Experimental settings

I Integrated in Distributed Key-Value store (JBoss Infinispan)

I 40 Virtual Machines (10 physical machines)

I Gigabit network



Modified TPC-C benchmark

Induce controllable locality:

I Probability p: Nodes access data associated with a given
warehouse.

I Probability 1− p: Nodes access data associated a random
warehouse.



Remote operations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

Pe
rc

en
ta

ge
 o

f r
em

ot
e 

op
er

at
io

ns
 (%

)

Time (minutes)

100% locality
90% locality
50% locality

0% locality
baseline



Throughput

 10

 100

 1000

 0  5  10  15  20  25  30

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d 

(T
X/

s)

Time (minutes)

100% locality
90% locality
50% locality

0% locality
baseline



Directory effects

 10

 100

 1000

100% Locality 90% Locality 0% Locality

T
ra

n
s
a
c
ti
o
n
 p

e
r 

s
e
c
o
n
d
 (

tx
/s

)
Autoplacer

Directory
Baseline



Outline

Introduction

Our approach

Evaluation

Conclusions



Conclusions

I Gather statistics only for hotspots

I Fine-grained hotspot placement

I Retain Local lookups using PAA

I Effective locality improvement

I Good network usage

I Considerable performance improvements



Conclusions

I Gather statistics only for hotspots

I Fine-grained hotspot placement

I Retain Local lookups using PAA

I Effective locality improvement

I Good network usage

I Considerable performance improvements



Thank you


	Introduction
	Introduction

	Our approach
	Approach
	Algorithm
	PAA
	review

	Evaluation
	Evaluation

	Conclusions
	Conclusions


