Towards an understanding of oversubscription in cloud

Salman A. Baset, Long Wang, Chunqiang Tang
sabaset@us.ibm.com
IBM T. J. Watson Research Center
Hawthorne, NY
Outline

- Oversubscription background
 - Airlines and cloud
 - What are typical overload symptoms for CPU, memory, disk, and network?
 - Isn’t managing oversubscribed cloud the same as ‘regular cloud’?
- Mitigating overload: mechanism vs. policy
- Contributions
 - Theoretical basis for oversubscription problem
 - A Markov model for oversubscription
 - SLAs and oversubscription
 - Results on increasing oversubscription in cloud by terminating or live migrating a VM while meeting SLAs
- Ongoing work
Motivation

Airline boss: my planes are not flying full. Overbook the seats!

Plans changed last minute

10 seat capacity
Motivation

10 seat capacity

12 people book seats, 2 cancel.

Airplane flies full
Motivation

10 seat capacity

12 people book seats, 12 show up

PROBLEM!!!!!!

Refund, vouchers etc
Cloud motivation

- Studies indicate that VMs do not fully utilize the provisioned resources

Definitions
- Provisioned resources
 - e.g., the resources with which a VM is configured. EC2 small instance (1.7 GB memory, 160 GB disk)
- Used resources
 - e.g., the resources used by a VM at a point time (1 GB memory, 50 GB disk)
- Overcommitted, oversubscribed

- Can we oversubscribe the resources of a physical machine while meeting the SLAs promised to a customer?
‘Regular’ cloud

8 GB RAM
1 TB disk
Quad core Xeon

8 GB RAM
1 TB disk
Quad core Xeon

VM:
2 GB RAM
500 GB
1 CPU

4 VMs per physical machine

Black box indicates provisioned resources per VM
Oversubscribed cloud

- Physical machine: 8 GB RAM, 1 TB disk, Quad core Xeon
- VM: 2 GB RAM, 500 GB, 1 CPU

8 VMs per physical machine

Black box indicates provisioned resources per VM
Oversubscribed cloud

- 8 GB RAM
- 1 TB disk
- Quad core Xeon

VM:
- 2 GB RAM
- 500 GB
- 1 CPU

- 8 VMs per physical machine

Black box indicates provisioned resources per VM
Green box indicates used resources per VM
Overload!

8 GB RAM
1 TB disk
Quad core Xeon

8 GB RAM
1 TB disk
Quad core Xeon

VM:
2 GB RAM
500 GB
1 CPU

8 VMs per physical machine

Black box indicates provisioned resources per VM

Green box indicates used resources per VM

VMs requesting more memory than available in physical server.
What are overload symptoms for CPU, memory, network, disk?

- CPU
- Memory
- Disk
- Network
What are overload symptoms for CPU, memory, network, disk?

- **CPU**
 - less CPU share per VM, long run queues

- **Memory**
 - Swapping to hypervisor disk, thrashing

- **Disk (spinning)**
 - Increased r/w latency, decreased throughput

- **Network**
 - Link fully utilized
What are overload symptoms for CPU, memory, network, disk?

- **CPU**
 - less CPU share per VM, long run queues

- **Memory**
 - Swapping to hypervisor disk, thrashing

- **Disk (spinning)**
 - Increased r/w latency, decreased throughput

- **Network**
 - Link fully utilized
What are overload symptoms for CPU, memory, network, disk?

- **CPU**
 - less CPU share per VM

- **Memory**
 - Swapping to hypervisor disk, thrashing

- **Disk (spinning)**
 - Increased r/w latency, decreased throughput

- **Network**
 - Link fully utilized

Monitoring agents within VMs and hypervisor may not get a chance to run as per their schedule
What are overload symptoms for CPU, memory, network, disk?

- **CPU**
 - less CPU share per VM

- **Memory**
 - Swapping to hypervisor disk, thrashing

- **Disk (spinning)**
 - Increased r/w latency, decreased throughput

- **Network**
 - Link fully utilized

If work of all VMs is I/O bound, a fully utilized link (for one VM) may cause other VMs to sit idle, wasting CPU and memory resources.
Isn’t managing oversubscribed cloud the same as ‘regular’ cloud?

- **Regular cloud**
 - Only network and disk are susceptible to overload
 - CPU and memory are never oversubscribed
- **Oversubscribed cloud**
 - CPU, disk, memory, and network are oversubscribed
Mitigating overload

- Mechanism vs. policy

- Mechanisms
 - Stealing
 - Borrow resources from one VM and give it to other
 - Quiescing
 - Terminate a VM. Which VMs to terminate?
 - Migrate
 - Live migration
 - Shared vs. local disk storage
 - VMware VMotion
 - Streaming disks
 - Offline migration
 - Which VMs to live / offline migrate?
 - Network memory
 - Swap space is over network. May work for transient workloads.
Handling overload

- **Overload detection**
 - Detect that overload is occurring (within VMs or physical server)
 - Hard or adaptive thresholds

- **Overload mitigation**
 - Mitigate overload by terminating a VM, live migrating it, or using network memory

- It is hard!
Overload mitigation policy

- Factors to consider
 - Performance
 - Useful work done
 - Cost
 - Fairness
 - Minimal impact to VMs
 - SLAs

- An optimization problem
Multiple-constraints single knapsack (FPTAS polynomial in n and 1/e for e > 0)
- Given n items and one bin (single knapsack)
- Each item and bin has d dimensions, and each item has profit p(i)
- Find a packing of n items into this bin which maximizes profit, while meeting bin dimensions

Multiple knapsacks (bin packing) (PTAS polynomial in 1/e for e > 0)
- Given n items, and m bins (knapsacks)
- Each item has a profit, p(i), and size(i)
- Find items with maximum profit that fit in n bins

Vector bin packing (no-APTAS cannot find a PTAS for every constant e > 0)
- Given n items and m bins
- Each item and bin has d dimensions
- Find a packing of n into m which minimizes m, while meeting bin dimensions

Online vector bin packing
- Same as above
- but also minimize the total number of moves across bins or VM terminations
The underlying theoretical problem of oversubscription

- Online multiple constraints multiple knapsack problem with costs of moving between knapsacks
 - Given n items (VMs), and m bins (servers)
 - Each VM and server has d dimensions, and each VM has utility u(i)
 - Moving a VM from server i to j has a cost M_{ij}
 - Terminating a VM k has a cost T_k
 - lambda is the rate of arrival of workloads within VMs (iid)
 - Utility of a VM and PM, U_{VM}, U_{PM}, respectively
 - State space:
 - resource consumption of PMs and VMs resources
 - PM resources: CPU, memory, disk, network
 - state tuple: (PM_i−CPU, PM_i−disk, PM_i−mem, PM_i−network)
 - state space explosion
 - probability of being in that state, given workload distributions
 - Utility of a state

- Given workload distributions, find argmax number of VMs s.t.
 - Total utility (profit) is maximized
SLAs and overload

- Overload must be precisely defined as part of SLAs
- What are the SLAs of public cloud providers?
 - None provide any performance guarantees for compute
 - Uptime guarantees, typically only for data center and not for VMs.
Compute SLA comparison

<table>
<thead>
<tr>
<th></th>
<th>Amazon EC2</th>
<th>Azure Compute</th>
<th>Rackspace Cloud Servers</th>
<th>Terremark vCloud Express</th>
<th>Storm on Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service guarantee</td>
<td>Availability (99.95%) 5 minute interval</td>
<td>Role uptime and availability, 5 minute interval</td>
<td>Availability</td>
<td>Availability</td>
<td>Availability</td>
</tr>
<tr>
<td>Granularity</td>
<td>Data center</td>
<td>Aggregate across all role</td>
<td>Per instance and data center + mgmt. stack</td>
<td>Data center + management stack</td>
<td>Per instance</td>
</tr>
<tr>
<td>Scheduled maintenance</td>
<td>Unclear if excluded</td>
<td>Includ. in service guarantee calc.</td>
<td>Excluded</td>
<td>Unclear if excluded</td>
<td>Excluded</td>
</tr>
<tr>
<td>Patching</td>
<td>N/A</td>
<td>Excluded</td>
<td>Excluded if managed</td>
<td>N/A</td>
<td>Excluded</td>
</tr>
<tr>
<td>Guarantee time period</td>
<td>365 days or since last claim</td>
<td>Per month</td>
<td>Per month</td>
<td>Per month</td>
<td>Unclear</td>
</tr>
<tr>
<td>Service credit</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td>1000% for every hour of downtime –</td>
</tr>
<tr>
<td>Violation report respon.</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
</tr>
<tr>
<td>Reporting time period</td>
<td>N/A</td>
<td>5 days of occurrence</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Claim filing timer period</td>
<td>30 business days of last reported incident in claim</td>
<td>Within 1 billing month of incident</td>
<td>Within 30 days of downtime</td>
<td>Within 30 days of the last reported incident in claim</td>
<td>Within 5 days of incident in question</td>
</tr>
<tr>
<td>Credit only for future payments</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Uptime guarantees on a data center (very weak)

Implicit uptime guarantees on a VM

Questions investigated in this paper

- Overload detection interval and request inter-arrival within VM
- Mitigating overload by terminating VMs over a do nothing approach
- Mitigating overload by live migrating a VM, over terminating VMs and do nothing.

Simulations

- Setup
 - 40 PMs (rack of physical machines), each has 64 GB of RAM
 - Only memory overload
 - 30 days of simulated time
 - Number of VMs fixed
 - Request interarrival rate exponentially distributed
 - Request size exponential and pareto – (real data set in progress)
 - Live migration: 1 VM per minute at most (mig-1) or all VMs until overload alleviated (mig-all).

- Overload definition
 - If memory consumption exceeds 95% of physical server memory for five contiguous minutes, overload occurs.

- Metrics
 - Percentage of VMs not experiencing overload for given workload arrival rate
 - Number of VMs terminated and migrated
Preliminary results

- Overcommit factor is 2.
- All VMs have same provisioned memory, i.e., 2 GB. Physical server has 64 GB memory.
- Average load on VMs as a function of provisioned capacity. E.g., 32.5% of 2 GB = 650 MB
- When average load on all VMs is 50% of provisioned capacity, the physical server memory is exhausted.

- Migration strategy: Select the VM with the largest memory consumption and terminate or live migrate it

- **Insights:**
 - Terminating a VM improves the uptime performance of all VMs by more than a factor of 2 over a do nothing approach.
 - Mig-1 (at most one migration per minute results in a step function like reduction in uptime)
Preliminary results

- **Insights:**
 - One or more VMs killed as aggregate memory consumption of all VMs approach physical server memory
 - mig-all can overly stress the network
 - Always selecting the VM with highest memory consumption for terminating or live migrating is not a good idea!
Questions under investigation

- To what extent a combination of VM quiescing and live migration schemes perform better than the individual schemes?

- Does asymmetry in oversubscription levels across PMs (within the same rack) and workload distributions lead to a higher overall overcommit level?

- When identical or asymmetric capacity VMs have different SLAs, which overload mitigation scheme gives the best results?

- When the available SLAs are defined per VM group instead of per VM, can it be leveraged to improve the performance of underlying overload mitigation scheme?

- How are the results affected when other resources such as CPU, network, and disk are oversubscribed?

- What is the best strategy for selecting VMs to terminate or live migrate?

- How the SLAs should be defined for oversubscribed environments?

- How can we answer all of the above questions for real workloads in a test-bed or deployed environment?