
FAERY : An FPGA-accelerated Embedding-based
Retrieval System

Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong Han, Yuhang Jiang,
Ding Tang, Zilong Wang, Kai Chen, Chuanxiong Guo

1

Hong Kong University of Science and

Technology
ByteDance

2

Corpus

Retrieval

> millions thousands

Ranking

Personal recommendation

Recommendation System

dozens

…

End results

Focus of this paper

3

Embedding-based Retrieval (EBR)

[4, 2, 1, 9]

Memory-intensive

Compute-intensive

User embedding

[3, 1, 5, 4]

[1, 5, 2, 8]

[2, 4, 7, 1]

…

A corpus of

item embeddings

Similarity scores

Inner product

55

88

32

…

TopK

4

Requirement of EBR

EBR servers

Queries

…

• High throughput

• A small number of servers (low cost) to serve a target QPS

• Low latency

• Good user experience

• EBR system usually has a latency SLA (e.g., 10 ms)

Low user’s overall waiting time

High quality of recommendation results

or

Both throughput and latency (thus latency-bounded

throughput) matter!

Memory

Large memory capacity
e.g., > 100 GB

Existing Work: CPU-based EBR

Core Core

Core Core

Queries

5

Large corpus size
e.g., > 400M items

Low throughput
e.g., 2.60×-3.45× lower throughput than FAERY

High latency
e.g., 98.09×-118.99× higher latency than FAERYLow memory bandwidth

e.g., up to 78 GB/s in our testbed

Limited number of cores
e.g., a few dozen

Slow corpus

scanning

Slow operator

computations

EBR modules:

Corpus store Corpus scanning

Similarity calc. K-selection

Architectural properties & limiations Implications on EBR

High latency
Inefficient K-selection

External memory

6

Existing Work: GPU-based EBR

SM SM SM

SM

SM

SM

SM

SM SM SM

SM SM SM

SM SM SM

High external memory bandwidth
e.g., 300 – 900 GB/s

High throughput
Fast corpus scanning

High throughput
Fast similarity calculation

Many streaming multiprocessors

(SMs) with massive SIMT cores

Architectural properties & limiations Implications on EBR
Core Core

Core Core

On-chip

memory

SM

Explicit resource boundary between SMs
- Small & exclusive on-chip memory in an SM

- Cross-SM comm. via external memory

EBR modules:

Corpus store Corpus scanning

Similarity calc. K-selection

High latency
Inefficient K-selection

7

Existing Work: GPU-based EBR (GPU-e)

Architectural properties & limiations Implications on EBR

Explicit resource boundary between SMs
- Small & exclusive on-chip memory in an SM

- Cross-SM comm. via external memory

GPU-e: K-selection with external memory

A. Shanbhag, etc. "Efficient Top-K Query Processing on Massively Parallel Hardware." 2018 ICMD.

Multiple memory traversals per query leads

to high latency, worsening in batch
e.g., 12.36x latency increase when batch size is

increased from 1 to 16 with a 4M corpus

External memory

SM SM SM

SM

SM

SM

SM

SM SM SM

SM SM SM

SM SM SM

Core Core

Core Core

On-chip

memory

SM

Corpus store

Similarity calc.

Corpus scanning

K-selection

EBR modules:

High latency
Inefficient K-selection

8

Existing Work: GPU-based EBR (GPU-o)

Architectural properties & limiations Implications on EBR

Explicit resource boundary between SMs
- Small & exclusive on-chip memory in an SM

- Cross-SM comm. via external memory

GPU-o: K-selection with on-chip memory

J. Johnson, etc. "Billion-scale Similarity Search with GPUs." 2017 arXiv.

- Small on-chip SRAM leads to a small K value

(e.g., 2048 in WarpSelect)

- K-selection in a single SM leads to high latency

(e.g., 9.48×-18.81× higher latency than FAERY)

External memory

SM SM SM

SM

SM

SM

SM

SM SM SM

SM SM SM

SM SM SM

Core Core

Core Core

On-chip

memory

SM

Corpus store

Similarity calc.

Corpus scanning

K-selection

EBR modules:

Summary of Existing Work

9

• None of existing EBRs achieve high throughput and low latency simultaneously
• CPU-based EBR:

• Pros: Large memory capacity for large corpus size

• Cons: Limited memory bandwith and limited number of CPU cores results in high latency and

low throughput

• GPU-based EBR:
• Pros: High memory bandwidth for fast corpus scanning and massive SIMT cores for fast

similarity calculation

• Cons: Explicit resource boundary between SMs results in poor pipeline support and thus high

latency and low latency-bounded throughput

What should a practically ideal EBR architecture that achieves

maximal latency-bounded throughput look like?

Practically Ideal EBR Architecture

10

Practically Ideal EBR Architecture

11

① Large external memory

② High memory bandwidth

Corpus store & corpus scanning

① Large

external memory

② High memory bandwidth

…

Emb

Emb

…

Emb

Emb

…

Emb

Emb

…

Practically Ideal EBR Architecture

12

Similarity calculation

③ Data parallelism

③ Data parallelism

…

Emb

Emb

…

Emb

Emb

…

Emb

Emb

…

Scoring

Practically Ideal EBR Architecture

13

K-selection

④ Data parallelism

⑤ Pipeline parallelism

…

Emb

Emb

…

Emb

Emb

…

Emb

Emb

…

Scoring

step 1 … step n

K-selection
…

M
erg

e…

k

k

k

Top-K
⑤ Pipeline parallelism

④ Data parallelism

Practically Ideal EBR Architecture

14

…

Emb

Emb

…

Emb

Emb

…

Emb

Emb

…

Scoring

Entire EBR data flow

step 1 … step n

K-selection
…

M
erg

e…

k

k

k

Top-K

⑥ Pipeline parallelism for the entire EBR data flow

Practically Ideal EBR Architecture

15

⑥ Pipeline parallelism for the entire EBR data flow

③ Data parallelism① Large

external memory

② High memory bandwidth

…

M
erg

e
④ Data parallelism

step 1 … step n

⑤ Pipeline parallelism

K-selection

Emb

Emb

…

Emb

Emb

…

Emb

Emb

…

… …

k

k

k

Top-K

Scoring

Batch size = 1: achieve minimal latency

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =
𝑆

𝐵
+ 𝐶

𝑆 : corpus size

𝐵 : memory bandwidth

𝐶 : pipeline latency

(Theoretical lower bound:
𝑆

𝐵
)

(typically small, so that
𝑆

𝐵
+ 𝐶 ≈

𝑆

𝐵
)

Fully-pipelined and non-congested data flow with a single pass

of external memory

Practically Ideal EBR Architecture

16

Batch size = N: achieve maximal latency-bounded throughput

External

memory
Scoring K-selection

Items Scores

Query

BS = 1

External

memory

Scoring K-selection
Items

Scores

Query 1

BS = N

(N > 1)

Result

Result for

query 1

Scoring K-selection
Scores

Query N

Result for

query N

…

Increase latency-bounded throughput linearly by increasing batch size

while preserving minimal latency

FPGA Opportunities for the Ideal Architecture

17

Motivate our design: FAERY

(FPGA-Accelerated Embedding-based Retrieval sYstem)

• FPGA is a programmable chip

• HBM: 8-32GB, 460GB/s

• Massive on-chip memories (10s of MB)

• Massive programmable logic elements

• Programmable interconnects

• Meet properties of the ideal EBR architecture

• Moderate corpus store & fast corpus scanning

• Data parallelism for similarity calculation

• Data/pipeline parallelism for K-selection

• Fully-pipelined data flow

FAERY Design Goal

18

Follow the ideal

architectureMaximize

latency-

bounded

throughput
Maximize the supported batch size with

given resources by minimizing resource

cost per batch query

Minimize latency

Scale throughput linearly with batch size

while preserving minimal latency

Design resource-efficient

operators

Design goal Three steps Methodologies

FAERY Accelerator Architecture

19

HBM Corpus Manager

Similarity Calculation

embemb

F
ilter

Scoring Unit

K-selection

1
-1

M
erg

er

2
-2

M
erg

er

K
-K

M
erg

er

…

query

DMA Engine

result

Horizontal

Buffer

Division

Embedding

Compaction

Corpus Store Corpus Scanning

embemb

embemb

embemb

embemb

Scoring Unit

Scoring Unit

Scoring Unit

Scoring Unit
Minimum value in running Top-K

Ideal architecture pipeline

Resource-efficient operators

FAERY Accelerator - K-selection

20

C

M

P

C

M

P

1-merger 2-merger

top4-merger

C

M

P

4-sorter

input output

Current Top-4

New Top-4

N. Matsumoto, etc. "Optimal parallel hardware k-sorter and top k-sorter, with FPGA implementations."

2015 14th International Symposium on Parallel and Distributed Computing.

1. Bottom-up merge sort allows processing input scores in a streaming manner.

2. Pipeline parallelism within K-selection is compute-efficient and scalable, e.g., the

above architecture requires only 𝑂(𝑙𝑜𝑔𝑘) comparators.

An example of 4-selection pipeline based on bottom-up merge sort

Observation

21

C

M

P

C

M

P

1-merger 2-merger

𝟔𝟒 𝟗𝟖

top4-merger

C

M

P

4-sorter

input output

Current Top-4

New Top-4

𝟏

If the input score is not greater than the minimum score of the current Top-K result,

this input will not be in the new Top-K result

These non-Top-K items can be early dropped to significantly reduce traffic to K-selection

FAERY Accelerator - Filter

22

Scoring Unit

Scoring Unit

Scoring Unit

1
-1

M
erg

er

2
-2

M
erg

er

K
-K

M
erg

er

…

Similarity Calculation K-selection

> 𝟒 ?

Filter

𝟏

𝟐

𝟕

𝟕

Minimum value in running Top-K

Saving resource by using filter and a small number of K-selection pipelines to

match the bandwidth of multiple scoring units

Prototype Implementation

23

Per-query pipeline implementation

HBM Corpus manager Similarity calculation Filter K-selection

8 GB & 460 GB/s

Support 16M items

400 MHz matches the

HBM bandwidth

Inner product

latency = 6 clock cycles

Save 32% on-chip memories

and 27% compute resources

Bottom-up merge sort

latency = 1034 clock cycles

Prototype setting
• Xilinx VU35P FPGA with a clock frequency of 400 MHz

• One embedding contains 128 elements of 2 bytes each

• k is 1024

Resource utilization & batch implementation (batch size = 3)

Per-query resources Common resources

LUT 7.31% 11.05%

FF 6.98% 14.78%

BRAM 13.05% 10.66%

DSP 8.6% 0.07%

Evaluation Setup

24

Baseline:

• Faiss, an open-source similarity search library, which supports both CPU and GPU

• Faiss GPU implementation utilizes WarpSelect, denoted as GPU-o

• Another GPU baseline replaces WarpSelect with RadixSelect, denoted as GPU-e

• Ideal latency (
𝑆

𝐵
+ 𝐶) of the ideal architecture

Platforms:

• CPU-based EBR: two 16-core Intel Xeon Gold 5218 CPUs

• GPU-based EBR: Nvidia T4 GPU with 300 GB/s GDDR6

• FAERY-d: degraded FAERY with the same memory bandwidth (300 GB/s) as T4

Corpora:

• Synthetic random corpora with different corpus size (1M-15M items)

Latency

25

Latency

26

Faery is within 1.16x to Ideal

Latency

27

FAERY-d achieves 1.21x-12.27x lower

latency than GPU

Latency-bounded Throughput

28

Latency target: 10 ms

Latency-bounded Throughput

29

Latency target: 10 ms

87%

Latency-bounded Throughput

30

Latency target: 10 ms

1.46x-4.29x

Energy & Cost Efficiency

31

1.66x-8.20x 1.31x-6.46x

Summary of Evaluation

32

Architecture Properties

CPU-based EBR Support extremely large corpus (> 100 GB) with poor performance

GPU-based EBR Provide high raw throughput (up to 1.44x compared to FAERY) with poor latency

FAERY
Provide low latency (within 1.16x to ideal) and high latency-bounded throughput

(up to 4.29x compared to GPU) with programmability/maintenance overhead

Conclusion

33

• We study the EBR algorithm from the first principles and derive a practically ideal EBR

architecture

• We design FAERY, a domain specific accelerator for EBR, which is an embodiment of the

ideal EBR architecture with filtering optimization

• FAERY can be extended to accelerate a generic vector search in future

Thank you!
Contact email: czengaf@connect.ust.hk

mailto:czengaf@connect.ust.hk

