
zIO: Accelerating IO-
Intensive Applications with
Transparent Zero-Copy IO
Tim Stamler1, Deukyeon Hwang1, Amanda Raybuck1,
Wei Zhang2, Simon Peter3

The University of Texas at Austin1 Microsoft2 University of Washington3

IO Copies are Common
Robust data exchange mechanism
among application subsystems

IO copy call sites:
Applications (& libraries)

Eg: gRPC, Protobuf

I/O stack APIs
Eg: POSIX API (recv/send)

33 24

 0
 2
 4
 6
 8

 10
 12
 14

64B 256B 1KB 4KB 16KB 64KB
 0

 20

 40

 60

 80

 100

Th
ro

ug
hp

ut
 [

G
b/

s]

%
 C

PU
 c

yc
le

s
in

 m
em

cp
y

Value size

Kernel-bypass CPU %
Linux CPU %
Kernel-bypass throughput
Linux throughput

IO-Intensive Apps are Increasingly Copy-Limited
More IO => more copies

High CPU overhead from
copies at high throughput

Kernel-bypass IO stacks
intensify the overhead

Other overheads reduced

1.8x
1.6x

Zero-copy IO?
Lots of work on single-stack zero-copy IO APIs:

Network: Solaris [ATC ‘96], FreeBSD [IEEE ‘01], RDMA, netmap [ATC ‘12]
Storage: Memory-mapped files

Cross-Stack APIs minimize copies across different IO stacks:
Demikernel [SOSP ‘21], PASTE [NSDI ‘18], Linux sendfile

Success has been limited:
Many require application modification or have non-transparent requirements
None seek to eliminate copies within the application (even if more prevalent)

zIO: Transparent Zero-Copy IO
An open-source, transparent IO copy elimination library

Transparently interposes on IO buffer copies

Eliminates application and IO stack API copies

Compatible with applications using POSIX IO and libc memcpy/memmove

zIO eliminates IO copies without application modification

Key Insights
Assumption: much IO data remains untouched by applications

In this case, the copy doesn’t need to happen

zIO speculatively elides and tracks IO buffer copies
Record original input buffer location when read from IO stack
Track and elide subsequent copies of this buffer
When writing to an output stack, present the original input buffer

Upon mis-speculation (IO buffer touched), lazily execute copy

zIO Transparent IO Copy Elision

read()/recv()

write()/send()

memcpy()/memmove()

I/OApplication

Intercepted APIs

Kernel

userfaultfd

libzio

load/store

free()

Page fault

Input buffer recording

Transitive buffer tracking

Input to output resolution

Cleaning

Lazy copy of touched IO

IO read:

IO write:

Application

Example: Application IO Copy Elision

Input IO Stack

I/O

Output IO Stack

I/O

read()

Original Buffer

\ \ \ \ \ \
memcpy()

Intermediate, Unmapped Buffer

\ \ \ \ \ \

zIO tracking:
Original Buffer

Buffer 1 -> Original

Buffer 2 -> Original

Key is Accessed

\ \ \ \

memcpy()

write()
(Read Only)

Each one page (4KB)

IO Stack API Copy Elision
To elide IO stack API copies, zIO needs to track across the API boundary

Difficult with kernel stacks; their APIs involve system calls

Discussed in paper

With kernel-bypass IO:

Kernel-bypass IO stacks hold IO in private buffers in user space

IO stack API simply copies between app-provided and private buffers

zIO tracks IO from private buffers as the original and elides the copy

Evaluation

Evaluation Questions
Does zIO improve IO throughput by eliminating copies?

Does zIO improve the performance of real world applications?

Does zIO affect scalability?

How does zIO compare to zero-copy IO APIs?

Experimental Setup
Intel Xeon Gold 6252 CPU 24 cores @ 2.10GHz

196GB RAM

Mellanox ConnectX-5 100Gb/s Ethernet

Benchmarks:
• Network echo server
• Key-value store (Redis)
• HTTP streaming & serving (Icecast)

Four configurations:
• Linux
• Elided in-app copies (zIO)
• Kernel-bypass IO (TAS [EuroSys'19], Strata [SOSP'17])
• Elided in-app + IO stack API copies (zIO+IO)

 0

 5

 10

 15

 20

 0 1 2 4 8 12

Th
ro

ug
hp

ut
 [G

b/
s]

Number of in-app copies

zIO+IO
zIO
TAS

Does zIO Improve IO Throughput?
Network echo server with varying intermediate copies and 512KB messages
Receive data (recv), configurable number of app copies, send data (send)

Linux network stack Kernel-bypass network stack

3.2x 2.2x

1.2x

2.4x

 0

 5

 10

 15

 20

 0 1 2 4 8 12

Th
ro

ug
hp

ut
 [G

b/
s]

Number of in-app copies

zIO
Linux

 0

 5

 10

8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 [G

b/
s]

Value size [KB]

zIO
Linux

Key-Value Store
YCSB Workload A (50% GET, 50% SET)

Redis with append-only file, persisting every request

1.4x

2.2x

Linux network+storage stack Kernel-bypass network+storage stack

 0

 5

 10

 15

 20

8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 [G

b/
s]

Value size [KB]

zIO+IO
Kernel-bypass

HTTP Streaming

Icecast streaming 1MB audio files in 64KB IO buffer chunks
Enough listener clients to saturate Icecast server
Using kernel-bypass IO

Network to network (1.16x higher throughput)
Single casting client connected to Icecast

Storage to network (1.27x higher throughput)
Icecast streams from local disk

HTTP Serving
512KB file in 64KB IO chunks, enough clients to saturate server, kernel-bypass IO

Two versions: 1. read from file, 2. mmap file (zero-copy API); both send on network

0

10

20

30

40

0

2

4

6

8

10

12

1 2 4 8 16

kT
LB

Sh
oo

td
ow

ns
 /

s

Th
ro

ug
hp

ut
 (G

bp
s)

read TLB zIO+IO TLB mmap TLB read zIO+IO mmap

zIO+IO 1.2x Speedup

mmap 1.2x down to 0.9x

Why? zIO+IO can
avoid TLB

shootdowns with
buffer reuse

Summary
zIO transparently accelerates IO intensive applications

Achieved by
1. Interposing on and eliding IO buffer copies
2. Tracking copied IO buffers, presenting the original on IO output
3. Lazily copying touched IO

1.8x speedup with Linux IO and 2.5x speedup with kernel bypass with Redis

Try it out here!
https://github.com/tstamler/zIO

https://github.com/tstamler/zIO

