z|O: Accelerating 10-
Intensive Applications with
Transparent Zero-Copy O

Tim Stamler!, Deukyeon Hwang!, Amanda Raybuckl,
Wei Zhang?, Simon Peter3

The University of Texas at Austin? Microsoft? University of Washington?

|O Coples are Common

Robust data exchange mechanism
among application subsystems

|0 copy call sites:

Applications (& libraries)
Eg: gRPC, Protobuf

1/0O stack APls
Eg: POSIX APl (recv/send)

10 Copy call site
Application Operation App 10 Stack
Redis SET 4 2
GET 2 1
Icecast Cast to N clients 0 1+N
Ceph Write 1 2
Read 0 2
Anna PUT
GET 4
MongoDB Insert 3 2
Disk sync 1 1
Read 2 2
Tensorflow-serving Inference 2 1
Nebula Graph Insert vertex 5 2
Store a vertex 4 3

W
w

24

Throughput [Gb/s]

|O-Intensive Apps are Increasingly Copy-Limited

Copy call site More IO => more copies
Application Operation App 10 Stack
Redis SET 4 2

High CPU overhead from

[[
Kernel-bypass CPU %

.~ mmm Linux CPU %

Kernel-bypass throughput

—#— Linux throughput

100

copies at high throughput

- 80

Kernel-bypass |0 stacks
intensify the overhead

Other overheads reduced

% CPU cycles in memcpy

2568

1KB

Value size

4KB

16KB

/ero-copy |0?

Lots of work on single-stack zero-copy 10 APIs:
Network: Solaris [ATC ‘96], FreeBSD [IEEE ‘01], RDMA, netmap [ATC “12]
Storage: Memory-mapped files

Cross-Stack APls minimize copies across different 10 stacks:
Demikernel [SOSP ‘21], PASTE [NSDI ‘18], Linux sendfile

Success has been limited:
Many require application modification or have non-transparent requirements
None seek to eliminate copies within the application (even if more prevalent)

ZIO: Transparent Zero-Copy 10

An open-source, transparent |0 copy elimination library
Transparently interposes on |10 buffer copies

Eliminates application and |0 stack API copies

Compatible with applications using POSIX 10 and libc memcpy/memmove

zl10 eliminates 10 copies without application modification

Key Insights

Assumption: much |O data remains untouched by applications
In this case, the copy doesn’t need to happen

z|O speculatively elides and tracks IO buffer copies
Record original input buffer location when read from |0 stack
Track and elide subsequent copies of this buffer
When writing to an output stack, present the original input buffer

Upon mis-speculation (10 buffer touched), lazily execute copy

zIO Transparent 10 Copy Elision

Application

Intercepted APIs

10 read: read()/recv()

load/store

libzio

Input buffer recording

Transitive buffer tracking

Input to output resolution

Cleaning

Lazy copy of touched 10

Kernel®

Page fault

/O

Example: Application |O Copy Elision

Application

cdlate, Unmappctme

WANANA

memcp
Original Buffer :'

ATl obe

(Read Only)
read() e
,'0
* . zIO tracking:
@ﬁ @:Fy QB Original Buffer @ﬁ
/ / Input 10 Stack Buffer 1 -> Original Output |0 Stack
Buffer 2 -> Original
I/
Each one page (4KB) ‘ 1 ‘ 1
/O

/0

|O Stack API Copy Elision

To elide |0 stack APl copies, zIO needs to track across the APl boundary
Difficult with kernel stacks; their APls involve system calls

Discussed in paper

With kernel-bypass |O:
Kernel-bypass |0 stacks hold 10 in private buffers in user space
|0 stack API simply copies between app-provided and private buffers

z|O tracks 10 from private buffers as the original and elides the copy

Fvaluation

Fvaluation Questions

Does zIO improve |0 throughput by eliminating copies?
Does zIO improve the performance of real world applications?
Does z10 affect scalability?

How does zIO compare to zero-copy 10 APIs?

Experimental Setup

Intel Xeon Gold 6252 CPU 24 cores @ 2.10GHz

196GB RAM
Mellanox ConnectX-5 100Gb/s Ethernet

Benchmarks: Four configurations:
* Network echo server e Linux
» Key-value store (Redis) e Elided in-app copies (zI0O)

e HTTP streaming & serving (lcecast) e Kernel-bypass 10 (TAS [urosys'19], Strata [sosp'17))
e Elided in-app + 10 stack APl copies (z10+I0O)

Does zIO Improve |0 Throughput?

Network echo server with varying intermediate copies and 512KB messages

Receive data (recv), configurable number of app copies, send data (send)

Throughput [Gb/s]

1.2x

Linux network stack

Kernel-bypass network stack

I I I 0N I
o - o)
= o o
_IS -~ -
Q
)
zI0 —e— 3 S5r zI0 —e—
Linux —®— = TAS
L1 | | = 0 L
1 2 4 8 12 O 1 2

Number of in-app copies

I
A —h
= % ’)
JI0+10 2.4x |I 2.2% i
I
8

4

Number of in-app copies

12

Throughput [Gb/s]

Key-Value Store

YCSB Workload A (50% GET, 50% SET)

Copy call site

Application Operation App IO Stack
Redis SET 4 2
GET 2 1

Redis with append-only file, persisting every request

Linux network+storage stack

Value size [KB]

Kernel-bypass network+storage stack

20
15 |

5_

oY

/)

7

2.2X

zIO+I10 —e—

| | Kerlnel—bypl)ass

Throughput [Gb/s]
|—I
o

16 32 64 128 256
Value size [KB]

512

Copy call site

HTTP Streamin g Application Operation App IO Stack

Icecast Cast to N clients 0 1+N

lcecast streaming 1MB audio files in 64KB 10 buffer chunks
Enough listener clients to saturate Icecast server
Using kernel-bypass 10

Network to network (1.16x higher throughput)
Single casting client connected to Icecast

Storage to network (1.27x higher throughput)
lcecast streams from local disk

Copy call site

H TT P S e rVi n g Application Operation App 10 Stack

Icecast Serve to N clients 0 1+N

512KB file in 64KB 10 chunks, enough clients to saturate server, kernel-bypass 10

Two versions: 1. read from file, 2. mmap file (zero-copy API); both send on network

Throughput (Gbps)

12 40
10 - —— 7|0+10 1.2x Speedup
L 3¢
8 —=— mmap 1.2x down to 0.9x
NS
6 20 §
4 10 5 Why? zI0+10 can
2 g avoid TLB
-~ shootdowns with
0 0

buffer reuse
1 2 4 8 16

read TLB zIO+IO TLB mmap TLB —read —zIO+IO —mmap

Summary

zIO transparently accelerates |0 intensive applications

Achieved by

1. Interposing on and eliding 10 buffer copies
2. Tracking copied IO buffers, presenting the original on 10 output
3. Lazily copying touched |10

1.8x speedup with Linux |O and 2.5x speedup with kernel bypass with Redis

Try it out here!
https://github.com/tstamler/zIO

https://github.com/tstamler/zIO

