
From Dynamic Loading to 
Extensible Transformation: 

An Infrastructure for Dynamic 
Library Transformation
Yuxin Ren, Kang Zhou, Jianhai Luan, Yunfeng Ye,

Shiyuan Hu, Xu Wu, Wenqin Zheng, Wenfeng Zhang, Xinwei Hu
Huawei Technologies



Background：dynamic library

• Modularity
complex software can be developed, delivered, and distributed as a collection of libraries, 
instead of a single binary.



Background：dynamic library

• Modularity
complex software can be developed, delivered, and distributed as a collection of libraries, 
instead of a single binary.

• Maintainability
dynamic library can be updated or patched individually without modifying or re-compiling the 
entire application.



Background：dynamic library

• Modularity
complex software can be developed, delivered, and distributed as a collection of libraries, 
instead of a single binary.

• Maintainability
dynamic library can be updated or patched individually without modifying or re-compiling the 
entire application.

• Sharability
dynamic library can be shared among multiple applications, thus avoid duplication in disk or 
memory



Background：dynamic library

• Modularity
complex software can be developed, delivered, and distributed as a collection of libraries, 
instead of a single binary.

• Maintainability
dynamic library can be updated or patched individually without modifying or re-compiling the 
entire application.

• Sharability
dynamic library can be shared among multiple applications, thus avoid duplication in disk or 
memory

• Open source friendly
license contamination：open source license requires all statically linked code should also be 
open-sourced



Background：dynamic library

• More and more dynamic libraries are shipped by vendors
• More and more dynamic libraries are used by applications

The number of dynamic libraries included in the 
CUDA Toolkit over the past decade Applications can rely on from tens to hundreds 

dynamic libraries



Background：performance overhead
Memory management： each library is 
individually mapped into the process’s 
address space. Invocation between libraries 
touch different pages, incurring TLB miss

A micro-benchmark that simply invokes 100 
dynamic libraries, and each library contains only 
one function accessing memory.
Performance comparison between glibc and iFed
on x86 machine.



Background：performance overhead
Memory management： each library is 
individually mapped into the process’s 
address space. Invocation between libraries 
touch different pages, incurring TLB miss

A micro-benchmark that simply invokes 100 
dynamic libraries, and each library contains only 
one function accessing memory.
Performance comparison between glibc and iFed
on x86 machine.

object

Relocation：more memory access and 
executed instructions incur extra branch miss, 
cache miss, etc… 

plt got library

simplified execution flow of relocation



Optimizations: Dynamic Library Concatenation

• Collect the same sections, such .code, from all dynamic libraries and 
concatenate them one by one to form a big section.
• This combined section is large enough to fit in hugepages

Different sections in different libraries 
use small page

Same sections in different libraries are 
combined and use hugepage



Optimizations: Dynamic Library Concatenation

Trade off
• Reduced address space layout randomization

Mitigations：
(1) concatenate libraries in random order. 
(2) non-continuous Hugepages.
(3) leverage other code randomization techniques at load time

• Reduced library sharing
Mitigations
(1) Only apply to performance critical applications
(2) Multiple forked instances can still share combined libraries
(3) Sharing part of a hugepage



Optimizations: Relocation Branch Elimination

• Rewrite the call instructions to replace their target address with the 
address of library functions, instead of using indirect jump
• Eliminate the extra memory access and branch instruction, achieve 

similar effect as static linking



Optimizations: Relocation Branch Elimination

Trade off
• Increased loading time

Mitigations：
(1) Little impact on long-running services, such as web server and database
(2) Apply in-memory caching technology to load the transformed image

• Increased binary size
Mitigations
(1) Download on-demand from remote storage
(2) Compresses binary



Optimazations: more

There is a large body of research focusing on load time technology.

PLDI’21

ASPLOS’20

CCS’12

USENIX Security’18

CCS’15

PLDI’20



Problems

• hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.



Problems

• hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.

• hard to maintain
Customized patch with application specific optimizations are hard to be accepted by upstream
.



Problems

• hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.

• hard to maintain
Customized patch with application specific optimizations are hard to be accepted by upstream
.

• hard to distribute
Multiple distributions to server different productions with various features



Problems

• hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.

• hard to maintain
Customized patch with application specific optimizations are hard to be accepted by upstream
.

• hard to distribute
Multiple distributions to server different productions with various features

• hard to use
Cannot combine different features for different application scenario



Problems

• hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.

• hard to maintain
Customized patch with application specific optimizations are hard to be accepted by upstream
.

• hard to distribute
Multiple distributions to server different productions with various features

• hard to use
Cannot combine different features for different application scenario

Root cause：
Monolithic design with 
no interface to allow extensions



New loader: goals

• Extensibility and Modularity
Various functionality should be organized in a loosely-coupled way instead of a monolithic 
implementation



New loader: goals

• Extensibility and Modularity
Various functionality should be organized in a loosely-coupled way instead of a monolithic 
implementation

• Flexibility and Customizability
flexibly configured for different trade-off on per-application, customer, or even per-run basis



New loader: goals

• Extensibility and Modularity
Various functionality should be organized in a loosely-coupled way instead of a monolithic 
implementation

• Flexibility and Customizability
flexibly configured for different trade-off on per-application, customer, or even per-run basis

• Compatibility and Transparency
Compatible with the existing loader interface and transparent to application



New loader: iFed overview

iFed (infrastructure for flexible and extensible dynamic 
library transformation)



New loader: key technique

• Runnable in-memory format
• ELF is for dense storage on disk, a in-memory counterpart is missing
• Abstract around common information and states, such as relocations and symbols
• Collect all information from all libraries for global optimization
• Expose unified interface to upper library transformation



New loader: key technique

• Pass-based optimization framework
• Library transformation is implemented as separated pass
• Multiple passes form a pipeline
• Passes interact via RiMF



New loader: evaluation

We evaluate iFed with a large range of application

Phoronix test suite on ARM physical machine

Phoronix test suite on x86 virtual machine



New loader: evaluation

evaluate iFed on multiple performance dimensions with a dynamic 
social website

Dynamic web serving performance



New loader: open question and discussion

• Loader Functionality
• Memory management
• Isolation
• Security enhancement
• Binary rewriting and execution control

• Other linker and loader architecture

• License：Is it reasonable to rely on the type of linking?



Conclusion

• A pass-based infrastructure for extensible, flexible, and modular 
transformation on dynamic library

• Two performance optimization passes
• Dynamic Library Concatenation
• Relocation Branch Elimination



openGauss is an open source relational database management system that is released with 
the Mulan PSL v2. with the kernel built on Huawei's years of experience in the database field 
and continuously provides competitive features tailored to enterprise-grade scenarios.

MindSpore is a deep learning framework in all scenarios, aiming to achieve easy development, 
efficient execution, and all-scenario coverage.

https://openeuler.org/en

As an open community, openEuler works with global developers to build an open, diverse, and 
architecture-inclusive software ecosystem that supports multiple processor architectures and 
covers a full range of digital facilities. openEuler is committed to supercharging enterprise 
digital infrastructure and boosting the application ecosystem.

https://opengauss.org/en/

https://www.mindspore.cn/en

Huawei is one of the top contributor in Linux community

OpenHarmony,OpenEuler, OpenGauss, MindSpore

openGauss

openEuler

MindSpore
OpenHarmony

OpenHarmony is an open-source project incubated and operated by the 
OpenAtom Foundation. It is an open-source operating system with a framework 
and platform applicable to smart devices in all scenarios of a fully-connected 
world. It aims to promote the development of the Internet of Everything (IoE).

https://www.openharmony.cn/

Most active 5.10 employers
By changesets By lines changed

Huawei 1434 8.9%

Intel 1297 8.0%

Intel 96976 12.6%

Huawei 41049 5.3%

Most active 5.8 employers
By changesets By lines changed

Intel 1939 11.9%

Huawei 1399 8.6%

Huawei 293365 27.8%

Intel 93213 8.8%

https://lwn.net/Articles/839772/

Open source communities


