Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences

Mingcong Han, Hanze Zhang, Rong Chen, Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Shanghai AI Laboratory

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China

Motivation

DNNs are widely adopted by modern intelligent applications

Motivation

Obstacle Detection

Fatigue Detection

Best-effort tasks

No hard real-time requirement

Motivation

- ? Low Inference Latency
- ✓ High Resource Utilization

GPU-accelerated DNN inference

 \square

Execution

Existing GPU Task Scheduling

- High latency for RT tasks
- High throughput (work-conserving)

Existing GPU Task Scheduling

Existing GPU Task Scheduling

REEF: GPU-accelerated DNN Inference System

REEF overview: architecture

Time

In normal mode, kernels are executed concurrently in multiple GPU streams

Time

reset-based preemption

switch to real-time mode

dynamic kernel padding

switch back to normal mode

Real-time Mode

Normal Mode

Normal Mode

- Low latency for real-time tasks
 - > Normal Mode: preempt best-effort tasks in a few μ s.
 - > **Real-time Mode**: get the GPU resources as many as possible.
- Work conserving for best-effort tasks
 - > Normal Mode: fully utilize GPU resources by using GPU streams.
 - **Real-time Mode**: use the GPU resources leftover by real-time tasks.

Reset-Based Preemption

Idempotence

```
# device codes
global void conv relu(in, weight, out):
1 \quad sum = 0;
2 for i in range(0,3)
3
  for j in range(0,3)
         sum += in[..] × weight[..]
4
5
  out[..] = ReLU(sum)
__global__ void dense(in, weight, bias, out):
6 \quad sum = 0;
   for i in range(0,512)
7
8
      sum += in[..] × weight[..]
9
  out[..] = sum + bias[..]
```

Idempotence

Reset-based Preemption

Key Idea: Dynamically <u>pad</u> RT kernels with BE kernels

Key Idea: Dynamically <u>pad</u> RT kernels with BE kernels

Key Idea: Dynamically <u>pad</u> RT kernels with BE kernels

Dynamic Kernel Padding

Key Idea: Dynamically <u>pad</u> RT kernels with BE kernels

- Hardware Environments
 - AMD Instinct MI50 GPU (60 CUs and 16 GB memory)
 - Intel Core i7-10700 CPU (8 cores) + 16 GB of DRAM

Software Environments

- ROCm 4.3.0
- Apache TVM 0.8.0

- DNN Inference Serving Benchmark (DISB)
 - A new benchmark for DNN inferences in real-time scenarios
 - Five representative DNN models:
 - ResNet-152 (RNET), DenseNet-201(DNET) ,VGG-19 (VGG),
 Inception-v3(IN3), DistilBert(BERT)

- DNN Inference Serving Benchmark (DISB)
 - A new benchmark for DNN inferences in real-time scenarios
 - Five representative DNN models:
 - ResNet-152 (RNET), DenseNet-201(DNET) ,VGG-19 (VGG),
 Inception-v3(IN3), DistilBert(BERT)
 - Five workloads

- Real-world Trace
 - From an open autonomous driving platform (i.e., ApolloAuto)

- Comparing targets
 - **RT-Only**: dedicate the GPU for RT tasks
 - **SEQ**: sequentially execute tasks without preemption
 - **GPUStreams**: execute RT/BE tasks concurrently in multiple GPU streams

Conclusion

- REEF: a GPU-accelerated DNN inference serving system
 - Achieve both low-latency (2% latency overhead for real-time tasks) and work-conserving (1.14x – 7.7x throughput improvement)
 - Reset-based preemption: µs-scale preemption based on *idempotence*
 - Dynamic kernel padding: controlled concurrent execution based on *latency predictability*

Thanks & QA

