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Deep Learning System Stack



Introducing Compiler
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A dense layer with ReLU activation

• Math expression: 

• Declaration:

dense(o, b) += data(i, b) * weight(i, o);
relu(o, b) = max(dense(o, b), 0.0)

Halide

dense = compute(shape, lambda b, o: sum(data[b,i] * weight[o,i], i))
relu  = compute(shape, lambda b, o: max(dense[b,o], 0.0))

TVM

Billions of possible implementations for it!



Related Work on Generating
High-Performance Tensor Programs



TVM's Approach

...

Manual Template

for i.0 in range(  ):
for j.0 in range(  ):

for k.0 in range(  ):
for i.1 in range(  ):

for j.1 in range(  ):
C[...] += A[...] * B[...]

for i.2 in range(  ):
for j.2 in range(  ):

D[...] = max(C[...], 0.0)

?
?

?
?

?

?
?

Parameter Search

AutoTVM: Template-guided search
Use templates to define the search space for every operator

Drawbacks
• Not fully-automated   -> Requires huge manual effort

• Limited search space  -> Does not achieve optimal performance

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning, OSDI 18



...

Incomplete Program

for i.0 in range(512):
for j.0 in range(512):

D[...] = max(C[...], 0.0)

How to build the next statement ?

Candidate 1

Candidate 2

Candidate 3

Candidate 4

Pruned

Pruned

Kept

Kept

Beam Search with Early Pruning

Learning to Optimize Halide with Tree Search and Random Programs, SIGGRAPH 19

Halide’s Auto-scheduler

Sequential Construction Based Search
Use beam search to generate the programs sequentially

Drawbacks
• Intermediate candidates are incomplete programs

-> The cost model cannot do accurate prediction

• Sequential order

-> The error accumulates

-> Limits the design of the search space



Challenges and our approach

C1: How to build a large search space automatically?
• Use a hierarchical search space

• Sample complete programs and fine-tune them

C2: How to search efficiently?

Fine-tuning

Better Programs

Low-level detail sampling

......
for i.0 in range(64):

for j.0 in range(64):
for k.0 in range(512):

for i.1 in range(8):
for j.1 in range(8):

D[...] = ...

Complete Programs

...
for ...

for ...
for ...

for ...

...
for ...

for ...
for ...

for ...

...
for ...

for ...
for ...

for ...

High-level structure generation

?
?

?

?

?



Challenges and our approach

• C3: How to allocate resource for many search tasks?

• Utilize a task scheduler to prioritize important tasks 

Layer 1

Layer 2

Layer 49

Layer 50

Layer 3

...

Need to generate programs for all layers -> A lot of search tasks



System Overview
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Program 
Sampling
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• Goal: automatically construct a large search space and uniformly 
sample from the space

• Approach
• Two-level hierarchical search space: Sketch + Annotation
• Sketch: a few good high-level structures
• Annotation: billions of low-level details

Program Sampling

Compute
Declaration

Rule-based
Sketch Generation

Sketch 1

Sketch 2

...

Random Annotation Complete
Programs

• Sampling process:



Sketch Generation Examples 1/2

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
C[...] += A[...] * B[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
D[...] = max(C[...], 0.0)

Generated	sketch	1
* The mathmetical expression:
! ", $ = &'[",)]

�

,
	×	/[), $]

0 ", $ = max	(! ", $ , 0.0)
where 0 ≤ ", $, ) < 512
* The corresponding naïve program:
for i in range(512):

for j in range(512):
for k in range(512):

C[i, j] += A[i, k] * B[k, j]
for i in range(512):

for j in range(512):
D[i, j] = max(C[i, j], 0.0)

* The corresponding DAG:

Example	Input	1:

A

B
C D

Derivation:

“SSRSRSS” multi-level tiling + fusion
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Random Annotation Examples

parallel i.0@j.0@i.1@j.1 in range(256):
for k.0 in range(32):
for i.2 in range(16):

unroll k.1 in range(16):
unroll i.3 in range(4):

vectorize j.3 in range(16):
C[...] += A[...] * B[...]

for i.4 in range(64):
vectorize j.4 in range(16):

D[...] = max(C[...], 0.0)

Sampled	program	1		

parallel i.2 in range(16):
for j.2 in range(128):
for k.1 in range(512):

for i.3 in range(32):
vectorize j.3 in range(4):

C[...] += A[...] * B[...]
parallel i.4 in range(512):

for j.4 in range(512):
D[...] = max(C[...], 0.0)

Sampled	program	2

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
C[...] += A[...] * B[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
D[...] = max(C[...], 0.0)
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parallel i.0@j.0@i.1@j.1 in range(256):

for k.0 in range(32):
for i.2 in range(16):

unroll k.1 in range(16):
unroll i.3 in range(4):

vectorize j.3 in range(16):
C[...] += A[...] * B[...]

for i.4 in range(64):
vectorize j.4 in range(16):

D[...] = max(C[...], 0.0)

Sampled	program	1		

parallel i.2 in range(16):
for j.2 in range(128):
for k.1 in range(512):

for i.3 in range(32):
vectorize j.3 in range(4):

C[...] += A[...] * B[...]
parallel i.4 in range(512):

for j.4 in range(512):
D[...] = max(C[...], 0.0)

Sampled	program	2

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
C[...] += A[...] * B[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
D[...] = max(C[...], 0.0)
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Performance
Fine-tuning

Deep Learning Models

Subgraph 1

Task Scheduler

Subgraph 2 Subgraph 3 · · · 

Program Sampler

Sketch Generation Random Annotation

Performance Tuner

Evolutionary Search Learned Cost Model

Intel CPU

Measurer

ARM CPU NVIDIA GPU · · · 

Partitioned subgraphs

One subgraph 

A batch of initial programs 

A batch of optimized programs 

Execution time of programs



Evolutionary Search

• Random sampling does not guarantee the performance
• Perform evolutionary search with learned cost model on sampled programs

• mutation

• crossover

+ =

• Randomly mutate tile size
• Randomly mutate parallel/unroll/vectorize factor and granularity
• Randomly mutate computation location



• Predict the score of each non-loop innermost statement

for i in range(10):
for j in range(10):

B[i][j] = A[i] * 2
for i in range(10):
C[i] = B[i][i] - 3

Statement B:

Statement C: 

Example:

Cost = Cost of Statement B + Cost of Statement C

• Extract features for every non-loop innermost statement:
• used cache lines, used memory, reuse distance, arithmetic intensity, ...

• Train on-the-fly with measured programs (typically less than 30,000)

Learned Cost Model



Task
Scheduler
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Task Scheduler
• There are many subgraphs (search tasks) in a network

• Example: ResNet-50 has 29 unique subgraphs after partition

• Predict each task’s impact on the end-to-end objective function
• Using optimistic guess and similarity between tasks

Task 1
Task 2

Task 3

• Existing systems: sequential optimization with a fixed allocation 

• Our task scheduler: slice the time and prioritize important subgraphs
Task 1

Task 2
Task 3

Task 1
Task 2

Task 1

Task 3

Task 1



Evaluation
Results

Three levels : single operator, subgraph and network



Single Operator
Platform:
Intel-Platinum 8124M (18 cores)

Operators:
conv1d (C1D), conv2d (C2D),
conv3d (C3D), matmul (GMM)
group conv2d (GRP),
dilated conv2d (DIL)
depthwise conv2d (DEP), 
conv2d transpose (T2D),
capsule conv2d (CAP),
matrix 2-norm (NRM)

Analysis: 
For most test cases, the best programs found by Ansor are
outside the search space of existing search-based frameworks.

Parallelize reduction loops

Unroll to simplify the multiplication of zeros in the strided case

Explore more tiling levels and computation locations



Subgraph

Platforms:
"@C" for Intel CPU (8124M)
"@G" for NVIDIA (V100)

Subgraphs:
ConvLayer = conv2d + bn + relu
TBS = transpose + batch_matmul 

+ softmax

Analysis:
Comprehensive coverage of the search space gives 1.1 – 14.2× speedup against the best alternative.



Network

Analysis 
• Ansor performs best or equally the best in all test cases with up to 3.8x speedup

Platforms:
Intel CPU (8124M)
NVIDIA GPU (V100)
ARM CPU (A53)

Networks: 
ResNet-50, Mobilenet V2, 
3D-ResNet, DCGAN, BERT

Intel CPU



Network

Platforms:
Intel CPU (8124M)
NVIDIA GPU (V100)
ARM CPU (A53)

Networks: 
ResNet-50, Mobilenet V2, 
3D-ResNet, DCGAN, BERT

Analysis 
• Ansor performs best or equally the best in all test cases with up to 3.8x speedup

NVIDIA GPU



Network

Platforms:
Intel CPU (8124M)
NVIDIA GPU (V100)
ARM CPU (A53)

Networks: 
ResNet-50, Mobilenet V2, 
3D-ResNet, DCGAN, BERT

ARM CPU

Analysis 
• Ansor performs best or equally the best in all test cases with up to 3.8x speedup
• Ansor delivers portable performance



Ablation Study

Analysis
• The most important factor is the search space
• Fine-tuning improves the search results significantly
• Task scheduler accelerates the search
• Match the performance of AutoTVM with 10x less search time

Ansor

Ansor w/o task scheduler

Ansor w/o fine-tuning

Ansor w/o large search space

Baseline (AutoTVM)



Summary

• Search-based compilation enables to generate high-performance 
tensor programs for deep learning

• Ansor introduces techniques to improve the search in three aspects:
• Large search space
• Efficient search algorithm
• Smart search scheduling

• Thank you for listening

• Email me to ask follow-up questions: lianminzheng@gmail.com


