Ansor : Generating High-Performance Tensor Programs for Deep Learning

Deep Learning System Stack

- PyTorch
- TensorFlow
- mxnet

Operator Library (CuDNN, MKL-DNN, ARM Compute Library, ...)

Device Hardware
Introducing Compiler

A dense layer with ReLU activation

- Math expression:
 \[\text{dense}_{b,o} = \sum_i \text{data}_{b,i} \times \text{weight}_{o,i} \]
 \[\text{relu}(b, o) = \max(\text{dense}_{b,o}, 0) \]

- Declaration:

 Halide
  ```
  dense(o, b) += data(i, b) * weight(i, o);
  relu(o, b) = max(dense(o, b), 0.0)
  ```

 TVM
  ```
  dense = compute(shape, lambda b, o: sum(data[b,i] * weight[o,i], i))
  relu = compute(shape, lambda b, o: max(dense[b,o], 0.0))
  ```

Billions of possible implementations for it!
Related Work on Generating High-Performance Tensor Programs
TVM's Approach

AutoTVM: Template-guided search
Use templates to define the search space for every operator

Drawbacks
• Not fully-automated -> Requires huge manual effort
• Limited search space -> Does not achieve optimal performance

Parameter Search

Manual Template

```
for i.0 in range(\_):  
    for j.0 in range(\_):  
        for k.0 in range(\_):  
            for i.1 in range(\_):  
                for j.1 in range(\_):  
                    C[...] += A[...] * B[...]  
                    for i.2 in range(\_):  
                        for j.2 in range(\_):  
                            D[...] = max(C[...], 0.0)
```
Halide’s Auto-scheduler

Sequential Construction Based Search
Use beam search to generate the programs sequentially

Drawbacks

• Intermediate candidates are incomplete programs
 -> The cost model cannot do accurate prediction
• Sequential order
 -> The error accumulates
 -> Limits the design of the search space

Beam Search with Early Pruning

Incomplete Program

```python
for i.0 in range(512):
  for j.0 in range(512):
    D[...] = \max(C[...], 0.0)
```

How to build the next statement?

Candidate 1: Pruned
Candidate 2: Kept
Candidate 3: Kept
Candidate 4: Pruned

Learning to Optimize Halide with Tree Search and Random Programs, SIGGRAPH 19
Challenges and our approach

C1: How to build a large search space automatically?
• Use a hierarchical search space

C2: How to search efficiently?
• Sample complete programs and fine-tune them
Challenges and our approach

- C3: How to allocate resource for many search tasks?
 - Utilize a task scheduler to prioritize important tasks

Need to generate programs for all layers -> A lot of search tasks
System Overview
Deep Learning Models

- Partitioned subgraphs

Task Scheduler

- Subgraph 1
- Subgraph 2
- Subgraph 3
- ...

Program Sampler

- Sketch Generation
- Random Annotation

Performance Tuner

- Evolutionary Search
- Learned Cost Model

Measurer

- Intel CPU
- ARM CPU
- NVIDIA GPU
- ...

Execution time of programs
Program Sampling

Deep Learning Models

Task Scheduler
- Subgraph 1
- Subgraph 2
- Subgraph 3
- ...

Program Sampler
- Sketch Generation
- Random Annotation

Performance Tuner
- Evolutionary Search
- Learned Cost Model

Measurer
- Intel CPU
- ARM CPU
- NVIDIA GPU
- ...

Partitioned subgraphs

One subgraph

A batch of initial programs

A batch of optimized programs

Execution time of programs
Program Sampling

• **Goal**: automatically construct a large search space and uniformly sample from the space

• **Approach**

 • Two-level hierarchical search space: **Sketch** + **Annotation**
 • **Sketch**: a few good high-level structures
 • **Annotation**: billions of low-level details

• Sampling process:
Sketch Generation Examples 1/2

Example Input 1:

* The mathematical expression:

\[C[i,j] = \sum_k A[i,k] \times B[k,j] \]

\[D[i,j] = \max(C[i,j], 0.0) \]

where \(0 \leq i,j,k < 512 \)

* The corresponding naïve program:

```python
for i in range(512):
    for j in range(512):
        for k in range(512):
            C[i, j] += A[i, k] \times B[k, j]
```

for i in range(512):
 for j in range(512):
 D[i, j] = \max(C[i, j], 0.0)

* The corresponding DAG:

A → C → D
B

Input 1 \[\rightarrow\] \sigma(S_0, i = 4) \xrightarrow{\text{Rule 1}} \sigma(S_1, i = 3) \xrightarrow{\text{Rule 4}} \sigma(S_2, i = 2) \xrightarrow{\text{Rule 1}} \sigma(S_3, i = 1) \xrightarrow{\text{Rule 1}} Sketch 1

Generated sketch 1

for i.0 in range(TILE_I0):
 for j.0 in range(TILE_J0):
 for i.1 in range(TILE_I1):
 for j.1 in range(TILE_J1):
 for k.0 in range(TILE_K0):
 for i.2 in range(TILE_I2):
 for j.2 in range(TILE_J2):
 for k.1 in range(TILE_I1):
 for i.3 in range(TILE_I3):
 for j.3 in range(TILE_J3):
 for k.2 in range(TILE_K1):
 for i.4 in range(TILE_I2 * TILE_I3):
 for j.4 in range(TILE_J2 * TILE_J3):
 D[...] = \max(C[...], 0.0)
```

"SSR\_RSS" multi-level tiling + fusion
Sketch Generation Examples 2/2

Example Input 2:

* The mathematical expression:
  \[ B[i, l] = \max(A[i, l], 0.0) \]
  \[ C[i, k] = \begin{cases} B[i, k] & k < 400 \\ 0 & k \geq 400 \end{cases} \]
  \[ E[i, j] = \sum_k C[i, k] \times D[k, j] \]

where \( 0 \leq i < 8, 0 \leq j < 4, 0 \leq k < 512, 0 \leq l < 400 \)

* The corresponding naive program:
  for i in range(8):
    for k in range(400):
      B[i, l] = max(A[i, l], 0.0)
  for i in range(8):
    for k in range(512):
      C[i, k] = B[i, k] if k < 400 else 0
  for i in range(8):
    for j in range(4):
      E[i, j] = C[i, k] * D[k, j]

* The corresponding DAG:

Generated sketch 2:

```python
for i in range(8):
 for k in range(512):
 C[i, j] = max(A[i, k], 0.0) if k<400 else 0
 for i.0 in range(TILE_10):
 for j.0 in range(TILE_10):
 for i.1 in range(TILE_1)
 for j.1 in range(TILE_1):
 for k.0 in range(TILE_K):
 for i.2 in range(TILE_2):
 for j.2 in range(TILE_2):
 for k.1 in range(TILE_1):
 for i.3 in range(TILE_I):
 for j.3 in range(TILE_J):
 E.cache[...] += C[...] * D[...]
 for i.4 in range(TILE_I2) * TILE_I3:
 for j.4 in range(TILE_J2) * TILE_J3:
 E[...] = E.cache[...]
```

Generated sketch 3:

```python
for i in range(8):
 for k in range(512):
 C[i, k] = max(A[i, k], 0.0) if k < 400 else 0
 for i in range(8):
 for j in range(4):
 E[i, j] = C[i, k] * D[k, j]
 for k.0 in range(TILE_K):
 for k.1 in range(TILE_K1):
 E.rf[...] += C[...] * D[...]
 for i in range(8):
 for j in range(4):
 for k.1 in range(TILE_K1):
 E[...] += E.rf[...]
```

Input 2 → \( \sigma(S_0, i = 5) \) → Rule 6 → \( \sigma(S_1, i = 4) \) → Rule 6 → \( \sigma(S_2, i = 3) \) → Rule 1 → \( \sigma(S_3, i = 2) \) → Rule 2 → \( \sigma(S_4, i = 1) \) → Rule 1 → Sketch 2
Random Annotation Examples

Generated sketch 1

for i.0 in range(TILE_I0):
    for j.0 in range(TILE_J0):
        for i.1 in range(TILE_I1):
            for j.1 in range(TILE_J1):
                for k.0 in range(TILE_K0):
                    for i.2 in range(TILE_I2):
                        for j.2 in range(TILE_J2):
                            for k.1 in range(TILE_K1):
                                for i.3 in range(TILE_I3):
                                    for j.3 in range(TILE_J3):
                                        C[...] += A[...] * B[...]

for i.4 in range(TILE_I2 * TILE_I3):
    for j.4 in range(TILE_J2 * TILE_J3):
        D[...] = max(C[...], 0.0)

Sampled program 1

parallel i.0@j.0@i.1@j.1 in range(256):
    for k.0 in range(32):
        for i.2 in range(16):
            unroll k.1 in range(16):
            unroll i.3 in range(4):
                vectorize j.3 in range(16):
                    C[...] += A[...] * B[...]
            for i.4 in range(64):
                vectorize j.4 in range(16):
                    D[...] = max(C[...], 0.0)

Sampled program 2

parallel i.2 in range(16):
    for j.2 in range(128):
        for k.1 in range(512):
            for i.3 in range(32):
                vectorize j.3 in range(4):
                    C[...] += A[...] * B[...]
            parallel i.4 in range(512):
                for j.4 in range(512):
                    D[...] = max(C[...], 0.0)
Performance Fine-tuning

Deep Learning Models
- Partitioned subgraphs

Task Scheduler
- Subgraph 1
- Subgraph 2
- Subgraph 3
- ...

Program Sampler
- Sketch Generation
- Random Annotation

Performance Tuner
- Evolutionary Search
- Learned Cost Model

Measurer
- Intel CPU
- ARM CPU
- NVIDIA GPU
- ...

Execution time of programs
Evolutionary Search

• Random sampling does not guarantee the performance
• Perform evolutionary search with learned cost model on sampled programs

• mutation
  • Randomly mutate tile size
  • Randomly mutate parallel/unroll/vectorize factor and granularity
  • Randomly mutate computation location

• crossover

\[
\text{blue} + \text{red} = \text{blue}
\]
Learned Cost Model

• Predict the score of each non-loop innermost statement

  **Example:**

  ```python
 for i in range(10):
 for j in range(10):
 for i in range(10):
 C[i] = B[i][i] - 3
  ```

  Cost = Cost of Statement B + Cost of Statement C

• Extract features for every non-loop innermost statement:
  • used cache lines, used memory, reuse distance, arithmetic intensity, ...

• Train on-the-fly with measured programs (typically less than 30,000)
Task Scheduler

Deep Learning Models
- Partitioned subgraphs

Task Scheduler
- Subgraph 1
- Subgraph 2
- Subgraph 3
- ...

Program Sampler
- Sketch Generation
- Random Annotation

Performance Tuner
- Evolutionary Search
- Learned Cost Model

Measurer
- Intel CPU
- ARM CPU
- NVIDIA GPU
- ...

Execution time of programs
Task Scheduler

• There are many **subgraphs** (search tasks) in a network
  • Example: ResNet-50 has 29 unique subgraphs after partition

• **Existing systems**: sequential optimization with a fixed allocation

• **Our task scheduler**: slice the time and prioritize important subgraphs

• Predict each task’s impact on the end-to-end objective function
  • Using optimistic guess and similarity between tasks
Evaluation Results

Three levels: single operator, subgraph and network
Single Operator

Platform:
Intel-Platinum 8124M (18 cores)

Operators:
conv1d (C1D), conv2d (C2D), conv3d (C3D), matmul (GMM) group conv2d (GRP), dilated conv2d (DIL) depthwise conv2d (DEP), conv2d transpose (T2D), capsule conv2d (CAP), matrix 2-norm (NRM)

Analysis:
For most test cases, the best programs found by Ansor are outside the search space of existing search-based frameworks.
Subgraph

Platforms:
"@C" for Intel CPU (8124M)
"@G" for NVIDIA (V100)

Subgraphs:
ConvLayer = conv2d + bn + relu
TBS = transpose + batch_matmul + softmax

Analysis:
Comprehensive coverage of the search space gives 1.1 – 14.2× speedup against the best alternative.
Network

Platforms:
- Intel CPU (8124M)
- NVIDIA GPU (V100)
- ARM CPU (A53)

Networks:
- ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Analysis
- Ansor performs best or equally the best in all test cases with up to 3.8x speedup
Network

Platforms:
Intel CPU (8124M)
NVIDIA GPU (V100)
ARM CPU (A53)

Networks:
ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Analysis
• Ansor performs best or equally the best in all test cases with up to 3.8x speedup
Network

Platforms:
Intel CPU (8124M)
NVIDIA GPU (V100)
ARM CPU (A53)

Networks:
ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Analysis
• Ansor performs best or equally the best in all test cases with up to 3.8x speedup
• Ansor delivers portable performance
Ablation Study

- The most important factor is the search space
- Fine-tuning improves the search results significantly
- Task scheduler accelerates the search
- Match the performance of AutoTVM with 10x less search time
Summary

• Search-based compilation enables to generate high-performance tensor programs for deep learning

• Ansor introduces techniques to improve the search in three aspects:
  • Large search space
  • Efficient search algorithm
  • Smart search scheduling

• Thank you for listening
• Email me to ask follow-up questions: lianminzheng@gmail.com